CountVectorizer是scikit-learn(sklearn)库中一个常用的文本特征提取工具,用于将文本数据转换为数值特征向量。它可以将文本转换为词频矩阵,其中每个文档表示为一个向量,向量的每个元素表示相应词的计数。在本文中,我们将介绍如何使用Python的sklearn中的CountVectorizer,并提供相应的源代码示例。
首先,我们需要安装scikit-learn库。可以使用pip来安装最新版本的scikit-learn:
pip install -U scikit-learn
安装完成后,我们可以开始使用CountVectorizer。
以下是一个简单的示例,展示了如何使用CountVectorizer将文本数据转换为词频矩阵:
from sklearn.feature_extraction.text import CountVectorizer
# 创建一个文本数据集
corpus