使用Python的scikit-learn(sklearn)中的CountVectorizer

278 篇文章 ¥59.90 ¥99.00
本文介绍了Python scikit-learn库中的CountVectorizer工具,用于将文本数据转换为词频矩阵。通过示例展示了如何使用CountVectorizer进行文本特征提取,并提到了一些常用参数如停用词过滤、最大特征词数量等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CountVectorizer是scikit-learn(sklearn)库中一个常用的文本特征提取工具,用于将文本数据转换为数值特征向量。它可以将文本转换为词频矩阵,其中每个文档表示为一个向量,向量的每个元素表示相应词的计数。在本文中,我们将介绍如何使用Python的sklearn中的CountVectorizer,并提供相应的源代码示例。

首先,我们需要安装scikit-learn库。可以使用pip来安装最新版本的scikit-learn:

pip install -U scikit-learn

安装完成后,我们可以开始使用CountVectorizer。

以下是一个简单的示例,展示了如何使用CountVectorizer将文本数据转换为词频矩阵:

from sklearn.feature_extraction.text import CountVectorizer

# 创建一个文本数据集
corpus 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值