笔试强训day18

压缩字符串(一)

利用字符重复出现的次数,编写一种方法,实现基本的字符串压缩功能。比如,字符串aabcccccaaa会变为a2bc5a3。
1.如果只有一个字符,1不用写
2.字符串中只包含大小写英文字母(a至z)。

数据范围:

0<=字符串长度<=50000

要求:时间复杂度O(N)

class Solution {
public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 
     * @param param string字符串 
     * @return string字符串
     */
    string compressString(string param) {
        // write code here
        //使用双指针来解决这个问题
        string ans;
        int n = param.size();
        int left,right;
        for(left = 0,right = 0;right<n;)
        {
            ans += param[left];
            while(param[left] == param[right]){
                ++right;
            }
            if(right-left!=1)
            ans += to_string(right-left);
            left = right;
        }
        if(left!=right)
        ans += to_string(right-left);
        return ans;
    }
};

chika和蜜柑

chika很喜欢吃蜜柑。每个蜜柑有一定的酸度和甜度,chika喜欢吃甜的,但不喜欢吃酸的。
一共有n个蜜柑,chika吃k个蜜柑,将获得所吃的甜度之和与酸度之和。chika想获得尽可能大的甜度总和。如果有多种方案,她希望总酸度尽可能小。
她想知道,最终的总酸度和总甜度是多少?

输入描述:

第一行有两个正整数n和k,分别代表蜜柑总数和chika吃的蜜柑数量。(1≤k≤n≤200000)
第二行有n个正整数ai,分别代表每个蜜柑的酸度。(1≤ai≤1e9)
第二行有n个正整数bi,分别代表每个蜜柑的甜度。(1≤bi≤1e9)

输出描述:

两个正整数,用空格隔开。分别表示总酸度和总甜度。

不知道有没有其他的方法,我是直接去对下标进行排序的

#include <iostream>
#include <algorithm>
#include <vector>

using namespace std;
typedef long long LL;
const int N = 200000;
int a[N],b[N];
int n,k;

int main()
{
    cin>>n>>k;
    for(int i = 0;i<n;++i)cin>>a[i];
    for(int i = 0;i<n;++i)cin>>b[i];
    vector<int>v(n);
    for(int i = 0;i<n;++i)v[i] = i;
    sort(v.begin(),v.end(),[&](int i,int j){
        return b[i] == b[j] ? a[i]<a[j] :b[i] > b[j];
    });
    LL ret1 = 0,ret2 = 0;
    for(int i = 0;i<k;++i)
    {
        ret1 += a[v[i]];
        ret2 += b[v[i]];
    }
    cout<<ret1<<" "<<ret2<<'\n';
    return 0;
}

01背包

已知一个背包最多能容纳体积之和为v的物品

现有 n 个物品,第 i 个物品的体积为 vi , 重量为 wi

求当前背包最多能装多大重量的物品?

数据范围: 1≤�≤10001≤v≤1000 , 1≤�≤10001≤n≤1000 , 1≤��≤10001≤v**i≤1000 , 1≤��≤10001≤w**i≤1000

进阶 :�(�⋅�)O(nv)

未优化空间版本

class Solution {
    static const int N = 1010;
    int dp[N][N];

public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 计算01背包问题的结果
     * @param V int整型 背包的体积
     * @param n int整型 物品的个数
     * @param vw int整型vector<vector<>> 第一维度为n,第二维度为2的二维数组,vw[i][0],vw[i][1]分别描述i+1个物品的vi,wi
     * @return int整型
     */
    int knapsack(int V, int n, vector<vector<int> >& vw) {
        // write code here
        for(int i = 1;i<=n;++i)
        {
            for(int j = 0;j<=V;++j)
            {
                dp[i][j] = dp[i-1][j];
                if(j>=vw[i-1][0])
                {
                    dp[i][j] = max(dp[i][j],dp[i-1][j-vw[i-1][0]] + vw[i-1][1]);
                }
            }
        }
        return dp[n][V];
    }
};

优化空间版本

class Solution {
    static const int N = 1010;
    int dp[N]{};

public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 计算01背包问题的结果
     * @param V int整型 背包的体积
     * @param n int整型 物品的个数
     * @param vw int整型vector<vector<>> 第一维度为n,第二维度为2的二维数组,vw[i][0],vw[i][1]分别描述i+1个物品的vi,wi
     * @return int整型
     */
    int knapsack(int V, int n, vector<vector<int> >& vw) {
        // write code here
        for(int i = 1;i<=n;++i)
        {
            for(int j = V;j>=vw[i-1][0];--j)
            {
                dp[j] = max(dp[j],dp[j-vw[i-1][0]]+vw[i-1][1]);
            }
        }
        return dp[V];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值