压缩字符串(一)
利用字符重复出现的次数,编写一种方法,实现基本的字符串压缩功能。比如,字符串aabcccccaaa会变为a2bc5a3。
1.如果只有一个字符,1不用写
2.字符串中只包含大小写英文字母(a至z)。
数据范围:
0<=字符串长度<=50000
要求:时间复杂度O(N)
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param param string字符串
* @return string字符串
*/
string compressString(string param) {
// write code here
//使用双指针来解决这个问题
string ans;
int n = param.size();
int left,right;
for(left = 0,right = 0;right<n;)
{
ans += param[left];
while(param[left] == param[right]){
++right;
}
if(right-left!=1)
ans += to_string(right-left);
left = right;
}
if(left!=right)
ans += to_string(right-left);
return ans;
}
};
chika和蜜柑
chika很喜欢吃蜜柑。每个蜜柑有一定的酸度和甜度,chika喜欢吃甜的,但不喜欢吃酸的。
一共有n个蜜柑,chika吃k个蜜柑,将获得所吃的甜度之和与酸度之和。chika想获得尽可能大的甜度总和。如果有多种方案,她希望总酸度尽可能小。
她想知道,最终的总酸度和总甜度是多少?
输入描述:
第一行有两个正整数n和k,分别代表蜜柑总数和chika吃的蜜柑数量。(1≤k≤n≤200000)
第二行有n个正整数ai,分别代表每个蜜柑的酸度。(1≤ai≤1e9)
第二行有n个正整数bi,分别代表每个蜜柑的甜度。(1≤bi≤1e9)
输出描述:
两个正整数,用空格隔开。分别表示总酸度和总甜度。
不知道有没有其他的方法,我是直接去对下标进行排序的
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 200000;
int a[N],b[N];
int n,k;
int main()
{
cin>>n>>k;
for(int i = 0;i<n;++i)cin>>a[i];
for(int i = 0;i<n;++i)cin>>b[i];
vector<int>v(n);
for(int i = 0;i<n;++i)v[i] = i;
sort(v.begin(),v.end(),[&](int i,int j){
return b[i] == b[j] ? a[i]<a[j] :b[i] > b[j];
});
LL ret1 = 0,ret2 = 0;
for(int i = 0;i<k;++i)
{
ret1 += a[v[i]];
ret2 += b[v[i]];
}
cout<<ret1<<" "<<ret2<<'\n';
return 0;
}
01背包
已知一个背包最多能容纳体积之和为v的物品
现有 n 个物品,第 i 个物品的体积为 vi , 重量为 wi
求当前背包最多能装多大重量的物品?
数据范围: 1≤�≤10001≤v≤1000 , 1≤�≤10001≤n≤1000 , 1≤��≤10001≤v**i≤1000 , 1≤��≤10001≤w**i≤1000
进阶 :�(�⋅�)O(n⋅v)
未优化空间版本
class Solution {
static const int N = 1010;
int dp[N][N];
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
* 计算01背包问题的结果
* @param V int整型 背包的体积
* @param n int整型 物品的个数
* @param vw int整型vector<vector<>> 第一维度为n,第二维度为2的二维数组,vw[i][0],vw[i][1]分别描述i+1个物品的vi,wi
* @return int整型
*/
int knapsack(int V, int n, vector<vector<int> >& vw) {
// write code here
for(int i = 1;i<=n;++i)
{
for(int j = 0;j<=V;++j)
{
dp[i][j] = dp[i-1][j];
if(j>=vw[i-1][0])
{
dp[i][j] = max(dp[i][j],dp[i-1][j-vw[i-1][0]] + vw[i-1][1]);
}
}
}
return dp[n][V];
}
};
优化空间版本
class Solution {
static const int N = 1010;
int dp[N]{};
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
* 计算01背包问题的结果
* @param V int整型 背包的体积
* @param n int整型 物品的个数
* @param vw int整型vector<vector<>> 第一维度为n,第二维度为2的二维数组,vw[i][0],vw[i][1]分别描述i+1个物品的vi,wi
* @return int整型
*/
int knapsack(int V, int n, vector<vector<int> >& vw) {
// write code here
for(int i = 1;i<=n;++i)
{
for(int j = V;j>=vw[i-1][0];--j)
{
dp[j] = max(dp[j],dp[j-vw[i-1][0]]+vw[i-1][1]);
}
}
return dp[V];
}
};