自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 The 2022 ICPC Asia Shenyang Regional Contest(DCLFA)

考虑整体移动区间, 在边界不跨越数字时,权值不会改变 , 因此一定会向一个固定的方向移动至有一个边界与数字重合.实际上若一行上可以平分 , 假定 选择了行, 可以压缩成一行, 正确性比较显然.数据范围很小 , 直接模拟即可 , 规则有点复杂 , 不读假题的话还是很简单的。的算法 , 下面考虑优化. 显然可以尝试前缀和优化. 对于完全重合的部分只有。若原始列数不行,可以考虑交换行列,若都不行,显然无解.否则一定有解.变小, 区间变大, 否则其权重为正 , 那么每个。的点 ,然后暴力枚举.然后就过了。

2025-04-20 13:45:03 1518

原创 ABC401

不妨先考虑全是?的情况 . 若长度为偶数, 显然所有位置都应该是?奇数时 : 以5为例 , 若要有3个o, 则只能为o.o.o具体地 : 我们将原来的串转化一下 , 若与之相邻存在o,其一定是,然后分割出一段一段的?,偶数长度不用管 , 记录一下最多能放多少个o, 以及需要放多少个o, 若恰好相等则每一个位置都固定了. 否则不用管. 特别地 ,若不用放o,需要将所有位置换成。

2025-04-13 19:47:07 1426

原创 ABC398

直接模拟 , 每次要维护的东西太多 . 但我们发现烟雾的运动是以火和人为参考系的. 如果我们更换参考系 , 以烟雾为参考系, 就只用维护2个东西了.由于只是转化了参考系,并不影响我们生成烟雾的过程.(奇数层染1, 偶数层染0), 显然连完边后还是一个二分图.若存在一个奇数环一定会存在同色的两个点相连 , 矛盾.为一个奇环 , 我们想改变其奇偶 ,只能在其环内连边 . 由(1),只能连奇环.故奇环数不变.(1) 先看第三种 , 说明该环内有个小环. 由于小环一定是偶环 , 故不会影响新环的奇偶.

2025-04-11 21:30:00 649

原创 2024 ICPC Asia Chengdu Regional Contest(LJABGI)

很容易想到答案是将数组划分成不减段后,除去最后一段的段长度的最大公因数的因数个数 . 由于段长很小 , 每次只会改变最多两个段, 我们可用两个数组计数 , 一个记录某个因子出现次数 , 一个记录出现次数的次数 . 最后的答案就是出现次数为段数减1的次数.比较显然.最后三个字符一定是">>>“,第一个一定是”>" ,一定有"-“,必要性显然 ,下面的构造方法能证明充分性. 找到最后一个”-".->>> , (长度需大于5) ,构造出题目给出的字符串.称让某个式子的某一位为1 的,x,y的取值为一个。

2025-04-10 20:42:31 1566

原创 组合数学练习1

不妨每次删完后重新编号 . 最后剩下的一个的编号显然是1 ,考虑倒退 . 考虑一下两个问题。第一个问题比较简单 , 而第二个问题要分正着删和反着删 , 正着删若当前的id为。如果我们分2的幂次奇偶讨论一下 , 可以算出解析解.的答案 . 换方向我们可以倒着编号 , 那么显然有。回到这个问题 , 一共进行10轮. id变化如下。,由于每隔一个人删一个 , 之前的编号显然为。中有且仅有一个满足条件.故答案为。的子问题 , 似乎可以递推.设。倒着删时 , 若当前id为。, 那么之前的编号为。

2025-04-10 14:00:09 374

原创 ABC399

用并查集计数即可.将每个数的两个位置存下来 , 根据条件直接数即可.用set计数比较好写.可以转化为一个图论问题 , 要将s中的a转化为t中的b可以看成一条边a→b若出度大于1 , 显然无解.否则若有环 , 如a→bb→cc→a, 3次操作显然不行 , 如果我们先将c→d, 就没有环了 , 可以做到.但是有可能c没有可以转化的d了 .我们需要的是在s没出现的一个字母 , 如果所有26个字母都在环内显然就无解 , 否则计算环的数目 .这里的环不能有其他的边 , 如a。

2025-04-10 10:13:31 253

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除