docker下载安装及镜像加速(安装示例4.26)附推荐入门教程

本文指导如何从官方下载并安装DockerDesktop,提示C盘空间不足时的解决方案,以及如何配置阿里云和科大镜像加速器。还推荐了学习资源如菜鸟教程和Docker官网教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下载

Docker Desktop 官方下载地址:点击直接下载
或者复制网址下载:https://docs.docker.com/desktop/install/windows-install/
下载后的软件图标
在这里插入图片描述

安装

安装前提醒:如果C盘的内存不足,可以创建文件链接,链接到指定的有多余空间的盘。

方法:

mklink /J “C:\Program Files\Docker” “D:\Program\Docker”
双击exe文件安装,安装会初始化,然后点击ok就可以安装了,docker默认是安装在C盘的Program file 文件夹下的的Docker文件。

安装开始
在这里插入图片描述
右下角显示OK,点击ok安装继续。图丢了

Docker安装成功
在这里插入图片描述
双击桌面docker图标打开docker desktop
在这里插入图片描述
docker 正在启动。
在这里插入图片描述
docker 启动成功
在这里插入图片描述

Docker配置加速

科大镜像:https://docker.mirrors.ustc.edu.cn/
阿里云镜像获取地址:https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors,先登录阿里云再点击跳转
在这里插入图片描述

docker 加速设置
->settings
在这里插入图片描述
->docker Engine
在这里插入图片描述

“registry-mirrors”:[“https://reg-mirror.qiniu.com/”,“https://hub-mirror.c.163.com/”]
这里的镜像源你可以写多个。

在这里插入图片描述
然后 Apply & restart 即可。
重启之后点击
在这里插入图片描述
通过http://localhost:8088/ 查看运行的welcome contianer
在这里插入图片描述
访问效果。
在这里插入图片描述
你可以在网上搜索更多关于docker的教程如:
菜鸟教程:Docker教程
w3cschool: Docker从入门到实践
官网docker docs

### 如何在 Docker 中使用和配置 BAAI/bge-large-zh-v1.5 模型 #### 准备工作 为了能够在 Docker 容器中顺利运行 `bge-large-zh-v1.5` 模型,需先完成环境准备。这包括安装 Docker 和设置必要的依赖项。 确保已经按照官方指南完成了 Docker安装[^1]。接着,在主机上创建一个新的目录用于存放项目文件,并进入该目录: ```bash mkdir my_project && cd my_project ``` #### 创建 Dockerfile 文件 接下来编写一个简单的 Dockerfile 来定义镜像构建过程以及启动命令。此文件会指导 Docker 构建所需的 Python 运行时环境并安装模型及其依赖库。 ```Dockerfile FROM python:3.8-slim-buster WORKDIR /app COPY requirements.txt ./ RUN pip install --no-cache-dir -r requirements.txt COPY ./src . CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "9997"] ``` 其中 `requirements.txt` 应包含如下内容来指定所需软件包版本: ```plaintext fastapi==0.68.0 transformers>=4.26.0,<5.0.0 torch>=1.10.0,<2.0.0 sentence-transformers>=2.2.2 uvicorn[standard]==0.15.0 ``` 注意这里选择了 FastAPI 作为 Web API 框架,它非常适合用来快速开发 RESTful 接口服务;而 Sentence-Transformers 是 Hugging Face 提供的一个易于使用的自然语言处理工具集,可以方便地加载预训练的语言表示模型如 `bge-large-zh-v1.5`. #### 编写应用逻辑代码 在项目的 src 目录下新建 main.py 文件实现主要业务功能——即接收 POST 请求并将输入文本转换为向量形式返回给客户端。以下是简化版的应用程序结构示例: ```python from fastapi import FastAPI, Request import torch from sentence_transformers import SentenceTransformer model_name = 'BAAI/bge-large-zh-v1.5' device = 'cuda' if torch.cuda.is_available() else 'cpu' # 加载模型实例到 GPU 或 CPU 上 model = SentenceTransformer(model_name).to(device) app = FastAPI() @app.post('/v1/embeddings') async def embeddings(request: Request): body = await request.json() inputs = body.get('input', []) model_output = model.encode(inputs) response_data = { 'data': [{'embedding': embedding.tolist()} for embedding in model_output], 'model': model_name, } return response_data ``` 这段脚本实现了 `/v1/embeddings` 路径下的 HTTP POST 方法处理器函数,能够接受 JSON 格式的请求体参数并通过调用 `encode()` 方法计算传入字符串列表对应的嵌入向量值。 #### 执行构建与部署操作 现在回到终端窗口执行下面两条指令依次完成镜像打包及容器实例化的工作流程: ```bash docker build -t bge_large_zh_api . docker run -p 9997:9997 --name=bge_large_zh_container -d bge_large_zh_api ``` 此时应该可以在浏览器地址栏访问 http://localhost:9997/docs 查看自动生成的交互式文档页面了! 通过上述步骤即可成功搭建起基于 Docker 的在线接口服务平台,允许外部应用程序轻松集成 `bge-large-zh-v1.5` 文字编码能力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值