人工智能-机器学习

人工智能三大概念:AI(人工智能),机器学习(ML),深度学习(DL),AI包含机器学习,机器学习包含深度学习。

机器学习常见术语:样本,特征,标签,训练集和测试集

算法分类:有监督学习,无监督学习,半监督学习,强化学习。

应用场景:计算机视觉(CV):对人看到的东西进行理解

                 自然语言处理(NLP):对人交流的东西进行理解

                 数据挖掘和数据分析:也属于人工智能的范畴。

样本(sample) :一行数据就是一个样本;多个样本组成数据集;有时一条样本被叫成一条记录

特征(feature) :一列数据一个特征,有时也被称为属性

标签/目标(label/target) :模型要预测的那一列数据

数据集:分为训练集和测试集

训练集(training set):用来训练模型(model)的数据集

测试集(testing set):用来测试模型的数据集

1.有监督学习:定义:输入数据是由输入特征值和目标值所组成,即输入的训练数据有标签的 数据集:需要标注数据的标签/目标值

2.无监督学习:定义:输入数据没有被标记,即样本数据类别未知,没有标签, 根据样本间的相似性,对样本集聚类,以发现事物内部结构及相互关系。

有监督分类问题:目标值(标签值)是不连续的 分类种类:二分类、多分类

有监督回归问题:目标值(标签值)是连续的

无监督eg:

无监督学习案例

半监督学习

 

强化学习:应用场景:里程碑AlphaGo围棋、各类游戏、对抗比赛、无人驾驶场景 

 基本原理:通过构建四个要素:agent,环境状态,行动,奖励, agent根据环境状态进行行动获得最多的累计奖励。

2.建模流程: 

 

 拟合问题: 

 KNN算法:K-近邻算法(K Nearest Neighbor,简称KNN)。比如:根据你的“邻居”来推断出你的类别,KNN算法思想:如果一个样本在特征空间中的 k 个最相似的样本中的大多数属于某一个别,则该样本也属于这个类别 。看图:

 

 

 KNN算法API使用 - 分类问题:

KNN分类API    sklearn.neighbors.KNeighborsClassifier(n_neighbors=5)          n_neighbors:int,可选(默认= 5),k_neighbors查询默认使用的邻居数

from sklearn.neighbors import KNeighborsClassifier
def dm01_knnapi_分类():
  estimator =  KNeighborsClassifier(n_neighbors=1)
  X = [[0], [1], [2], [3]]
y = [0, 0, 1, 1]    estimator.fit(X, y)
 myret = estimator.predict([[4]])
  print('myret-->', myret)

KNN算法API使用 - 回归问题:

KNN回归API: sklearn.neighbors.KNeighborsRegressor(n_neighbors=5)

from sklearn.neighbors import KNeighborsRegressor
def dm02_knnapi_回归():   
estimator =  KNeighborsRegressor(n_neighbors=2)
 X = [[0, 0, 1],        [1, 1, 0],
     [3, 10, 10],       [4, 11, 12]]  
y = [0.1, 0.2, 0.3, 0.4]
   estimator.fit(X, y)
  myret = estimator.predict([[3, 11, 10]])
 print('myret-->', myret)

距离度量

 

 

特征预处理 :

 

 

 

案例之鸢尾花分类:

# 0.导入工具包
from sklearn.datasets import load_iris
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 1.加载数据集
iris_data = load_iris()
# print(iris_data)
# print(iris_data.target)


# 2.数据展示
iris_df = pd.DataFrame(iris_data['data'], columns=iris_data.feature_names)
iris_df['label'] = iris_data.target
# print(iris_data.feature_names)
# sns.lmplot(x='sepal length (cm)',y='sepal width (cm)',data = iris_df,hue='label')
# plt.show()


# 3.特征工程(预处理-标准化)
# 3.1 数据集划分
x_train, x_test, y_train, y_test = train_test_split(iris_data.data, iris_data.target, test_size=0.3, random_state=22)
print(len(iris_data.data))
print(len(x_train))
# 3.2 标准化
process = StandardScaler()
x_train = process.fit_transform(x_train)
x_test = process.transform(x_test)
# 4.模型训练
# 4.1 实例化
model = KNeighborsClassifier(n_neighbors=3)
# 4.2 调用fit法
model.fit(x_train,y_train)
# 5.模型预测
x = [[5.1, 3.5, 1.4, 0.2]]
x=process.transform(x)
y_predict =model.predict(x_test)
print(model.predict_proba(x))

# 6.模型评估(准确率)
# 6.1 使用预测结果
acc =accuracy_score(y_test,y_predict)
print(acc)

# 6.2 直接计算
acc = model.score(x_test,y_test)
print(acc)

 超参数选择方法:交叉验证,网格搜索,和一个案例数字识别的

代码如下:

# 0.导入工具包
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 1.加载数据
data = load_iris()

# 2 数据集划分
x_train,x_test,y_train,y_test=train_test_split(data.data,data.target,test_size=0.2,random_state=22)

# 3.特征预处理
pre = StandardScaler()
x_train=pre.fit_transform(x_train)
x_test=pre.transform(x_test)

# 4.模型实例化+交叉验证+网格搜索
model = KNeighborsClassifier(n_neighbors=1)
paras_grid = {'n_neighbors':[4,5,7,9]}
# estimator =GridSearchCV(estimator=model,param_grid=paras_grid,cv=4)
# estimator.fit(x_train,y_train)

# print(estimator.best_score_)
# print(estimator.best_estimator_)
# print(estimator.cv_results_)

model = KNeighborsClassifier(n_neighbors=7)
model.fit(x_train,y_train)
x = [[5.1, 3.5, 1.4, 0.2]]
x=pre.transform(x)
y_prdict=model.predict(x_test)

print(accuracy_score(y_test,y_prdict))

手写数字识别案例:

import matplotlib.pyplot as plt
import pandas as pd
from collections import Counter
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
import joblib


# 1.读取数据
data = pd.read_csv('手写数字识别.csv')
x = data.iloc[:,1:]
y = data.iloc[:,0]
# print(Counter(y))

# 2.显示
# digit =x.iloc[1000].values
# img =digit.reshape(28,28)
# plt.imshow(img,cmap='gray')
# plt.imsave('digit.png',img)
# plt.show()

# 3.数据预处理
# 3.1 归一化
x = x/255.
# 3.2 数据集划分
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,stratify=y,random_state=22)


# # 4.模型训练
# # 4.1 实例化
# model =KNeighborsClassifier(n_neighbors=11)
# # 4.2 训练
# model.fit(x_train,y_train)
#
# # 5.模型预测
# img =plt.imread('digit.png')
# img =img[:,:,1].reshape(1,-1)/255.
# y_predict=model.predict(x_test)
# print(y_predict)
#
# # 6.模型评估
# print(model.score(x_test,y_test))
# print(accuracy_score(y_predict,y_test))

# 7.模型保存
# joblib.dump(model,'knn.pth')

# 8.模型加载
knn =joblib.load('knn.pth')
# print(knn.score(x_test,y_test))
img =plt.imread('digit.png')
img =img[:,:,1].reshape(1,-1)
print(knn.predict(img))

csv文件里面内容如下: 

label,pixel0,pixel1,pixel2,pixel3,pixel4,pixel5,pixel6,pixel7,pixel8,pixel9,pixel10,pixel11,pixel12,pixel13,pixel14,pixel15,pixel16,pixel17,pixel18,pixel19,pixel20,pixel21,pixel22,pixel23,pixel24,pixel25,pixel26,pixel27,pixel28,pixel29,pixel30,pixel31,pixel32,pixel33,pixel34,pixel35,pixel36,pixel37,pixel38,pixel39,pixel40,pixel41,pixel42,pixel43,pixel44,pixel45,pixel46,pixel47,pixel48,pixel49,pixel50,pixel51,pixel52,pixel53,pixel54,pixel55,pixel56,pixel57,pixel58,pixel59,pixel60,pixel61,pixel62,pixel63,pixel64,pixel65,pixel66,pixel67,pixel68,pixel69,pixel70,pixel71,pixel72,pixel73,pixel74,pixel75,pixel76,pixel77,pixel78,pixel79,pixel80,pixel81,pixel82,pixel83,pixel84,pixel85,pixel86,pixel87,pixel88,pixel89,pixel90,pixel91,pixel92,pixel93,pixel94,pixel95,pixel96,pixel97,pixel98,pixel99,pixel100,pixel101,pixel102,pixel103,pixel104,pixel105,pixel106,pixel107,pixel108,pixel109,pixel110,pixel111,pixel112,pixel113,pixel114,pixel115,pixel116,pixel117,pixel118,pixel119,pixel120,pixel121,pixel122,pixel123,pixel124,pixel125,pixel126,pixel127,pixel128,pixel129,pixel130,pixel131,pixel132,pixel133,pixel134,pixel135,pixel136,pixel137,pixel138,pixel139,pixel140,pixel141,pixel142,pixel143,pixel144,pixel145,pixel146,pixel147,pixel148,pixel149,pixel150,pixel151,pixel152,pixel153,pixel154,pixel155,pixel156,pixel157,pixel158,pixel159,pixel160,pixel161,pixel162,pixel163,pixel164,pixel165,pixel166,pixel167,pixel168,pixel169,pixel170,pixel171,pixel172,pixel173,pixel174,pixel175,pixel176,pixel177,pixel178,pixel179,pixel180,pixel181,pixel182,pixel183,pixel184,pixel185,pixel186,pixel187,pixel188,pixel189,pixel190,pixel191,pixel192,pixel193,pixel194,pixel195,pixel196,pixel197,pixel198,pixel199,pixel200,pixel201,pixel202,pixel203,pixel204,pixel205,pixel206,pixel207,pixel208,pixel209,pixel210,pixel211,pixel212,pixel213,pixel214,pixel215,pixel216,pixel217,pixel218,pixel219,pixel220,pixel221,pixel222,pixel223,pixel224,pixel225,pixel226,pixel227,pixel228,pixel229,pixel230,pixel231,pixel232,pixel233,pixel234,pixel235,pixel236,pixel237,pixel238,pixel239,pixel240,pixel241,pixel242,pixel243,pixel244,pixel245,pixel246,pixel247,pixel248,pixel249,pixel250,pixel251,pixel252,pixel253,pixel254,pixel255,pixel256,pixel257,pixel258,pixel259,pixel260,pixel261,pixel262,pixel263,pixel264,pixel265,pixel266,pixel267,pixel268,pixel269,pixel270,pixel271,pixel272,pixel273,pixel274,pixel275,pixel276,pixel277,pixel278,pixel279,pixel280,pixel281,pixel282,pixel283,pixel284,pixel285,pixel286,pixel287,pixel288,pixel289,pixel290,pixel291,pixel292,pixel293,pixel294,pixel295,pixel296,pixel297,pixel298,pixel299,pixel300,pixel301,pixel302,pixel303,pixel304,pixel305,pixel306,pixel307,pixel308,pixel309,pixel310,pixel311,pixel312,pixel313,pixel314,pixel315,pixel316,pixel317,pixel318,pixel319,pixel320,pixel321,pixel322,pixel323,pixel324,pixel325,pixel326,pixel327,pixel328,pixel329,pixel330,pixel331,pixel332,pixel333,pixel334,pixel335,pixel336,pixel337,pixel338,pixel339,pixel340,pixel341,pixel342,pixel343,pixel344,pixel345,pixel346,pixel347,pixel348,pixel349,pixel350,pixel351,pixel352,pixel353,pixel354,pixel355,pixel356,pixel357,pixel358,pixel359,pixel360,pixel361,pixel362,pixel363,pixel364,pixel365,pixel366,pixel367,pixel368,pixel369,pixel370,pixel371,pixel372,pixel373,pixel374,pixel375,pixel376,pixel377,pixel378,pixel379,pixel380,pixel381,pixel382,pixel383,pixel384,pixel385,pixel386,pixel387,pixel388,pixel389,pixel390,pixel391,pixel392,pixel393,pixel394,pixel395,pixel396,pixel397,pixel398,pixel399,pixel400,pixel401,pixel402,pixel403,pixel404,pixel405,pixel406,pixel407,pixel408,pixel409,pixel410,pixel411,pixel412,pixel413,pixel414,pixel415,pixel416,pixel417,pixel418,pixel419,pixel420,pixel421,pixel422,pixel423,pixel424,pixel425,pixel426,pixel427,pixel428,pixel429,pixel430,pixel431,pixel432,pixel433,pixel434,pixel435,pixel436,pixel437,pixel438,pixel439,pixel440,pixel441,pixel442,pixel443,pixel444,pixel445,pixel446,pixel447,pixel448,pixel449,pixel450,pixel451,pixel452,pixel453,pixel454,pixel455,pixel456,pixel457,pixel458,pixel459,pixel460,pixel461,pixel462,pixel463,pixel464,pixel465,pixel466,pixel467,pixel468,pixel469,pixel470,pixel471,pixel472,pixel473,pixel474,pixel475,pixel476,pixel477,pixel478,pixel479,pixel480,pixel481,pixel482,pixel483,pixel484,pixel485,pixel486,pixel487,pixel488,pixel489,pixel490,pixel491,pixel492,pixel493,pixel494,pixel495,pixel496,pixel497,pixel498,pixel499,pixel500,pixel501,pixel502,pixel503,pixel504,pixel505,pixel506,pixel507,pixel508,pixel509,pixel510,pixel511,pixel512,pixel513,pixel514,pixel515,pixel516,pixel517,pixel518,pixel519,pixel520,pixel521,pixel522,pixel523,pixel524,pixel525,pixel526,pixel527,pixel528,pixel529,pixel530,pixel531,pixel532,pixel533,pixel534,pixel535,pixel536,pixel537,pixel538,pixel539,pixel540,pixel541,pixel542,pixel543,pixel544,pixel545,pixel546,pixel547,pixel548,pixel549,pixel550,pixel551,pixel552,pixel553,pixel554,pixel555,pixel556,pixel557,pixel558,pixel559,pixel560,pixel561,pixel562,pixel563,pixel564,pixel565,pixel566,pixel567,pixel568,pixel569,pixel570,pixel571,pixel572,pixel573,pixel574,pixel575,pixel576,pixel577,pixel578,pixel579,pixel580,pixel581,pixel582,pixel583,pixel584,pixel585,pixel586,pixel587,pixel588,pixel589,pixel590,pixel591,pixel592,pixel593,pixel594,pixel595,pixel596,pixel597,pixel598,pixel599,pixel600,pixel601,pixel602,pixel603,pixel604,pixel605,pixel606,pixel607,pixel608,pixel609,pixel610,pixel611,pixel612,pixel613,pixel614,pixel615,pixel616,pixel617,pixel618,pixel619,pixel620,pixel621,pixel622,pixel623,pixel624,pixel625,pixel626,pixel627,pixel628,pixel629,pixel630,pixel631,pixel632,pixel633,pixel634,pixel635,pixel636,pixel637,pixel638,pixel639,pixel640,pixel641,pixel642,pixel643,pixel644,pixel645,pixel646,pixel647,pixel648,pixel649,pixel650,pixel651,pixel652,pixel653,pixel654,pixel655,pixel656,pixel657,pixel658,pixel659,pixel660,pixel661,pixel662,pixel663,pixel664,pixel665,pixel666,pixel667,pixel668,pixel669,pixel670,pixel671,pixel672,pixel673,pixel674,pixel675,pixel676,pixel677,pixel678,pixel679,pixel680,pixel681,pixel682,pixel683,pixel684,pixel685,pixel686,pixel687,pixel688,pixel689,pixel690,pixel691,pixel692,pixel693,pixel694,pixel695,pixel696,pixel697,pixel698,pixel699,pixel700,pixel701,pixel702,pixel703,pixel704,pixel705,pixel706,pixel707,pixel708,pixel709,pixel710,pixel711,pixel712,pixel713,pixel714,pixel715,pixel716,pixel717,pixel718,pixel719,pixel720,pixel721,pixel722,pixel723,pixel724,pixel725,pixel726,pixel727,pixel728,pixel729,pixel730,pixel731,pixel732,pixel733,pixel734,pixel735,pixel736,pixel737,pixel738,pixel739,pixel740,pixel741,pixel742,pixel743,pixel744,pixel745,pixel746,pixel747,pixel748,pixel749,pixel750,pixel751,pixel752,pixel753,pixel754,pixel755,pixel756,pixel757,pixel758,pixel759,pixel760,pixel761,pixel762,pixel763,pixel764,pixel765,pixel766,pixel767,pixel768,pixel769,pixel770,pixel771,pixel772,pixel773,pixel774,pixel775,pixel776,pixel777,pixel778,pixel779,pixel780,pixel781,pixel782,pixel783
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,188,255,94,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,191,250,253,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,123,248,253,167,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,247,253,208,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,29,207,253,235,77,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,54,209,253,253,88,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,93,254,253,238,170,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,210,254,253,159,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,209,253,254,240,81,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,253,253,254,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,206,254,254,198,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,168,253,253,196,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,203,253,248,76,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,22,188,253,245,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,103,253,253,191,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,89,240,253,195,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,220,253,253,80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,94,253,253,253,94,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,89,251,253,250,131,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,214,218,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,30,137,137,192,86,72,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,86,250,254,254,254,254,217,246,151,32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,179,254,254,254,254,254,254,254,254,254,231,54,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,72,254,254,254,254,254,254,254,254,254,254,254,254,104,0,0,0,0,0,0,0,0,0,0,0,0,0,61,191,254,254,254,254,254,109,83,199,254,254,254,254,243,85,0,0,0,0,0,0,0,0,0,0,0,0,172,254,254,254,202,147,147,45,0,11,29,200,254,254,254,171,0,0,0,0,0,0,0,0,0,0,0,1,174,254,254,89,67,0,0,0,0,0,0,128,252,254,254,212,76,0,0,0,0,0,0,0,0,0,0,47,254,254,254,29,0,0,0,0,0,0,0,0,83,254,254,254,153,0,0,0,0,0,0,0,0,0,0,80,254,254,240,24,0,0,0,0,0,0,0,0,25,240,254,254,153,0,0,0,0,0,0,0,0,0,0,64,254,254,186,7,0,0,0,0,0,0,0,0,0,166,254,254,224,12,0,0,0,0,0,0,0,0,14,232,254,254,254,29,0,0,0,0,0,0,0,0,0,75,254,254,254,17,0,0,0,0,0,0,0,0,18,254,254,254,254,29,0,0,0,0,0,0,0,0,0,48,254,254,254,17,0,0,0,0,0,0,0,0,2,163,254,254,254,29,0,0,0,0,0,0,0,0,0,48,254,254,254,17,0,0,0,0,0,0,0,0,0,94,254,254,254,200,12,0,0,0,0,0,0,0,16,209,254,254,150,1,0,0,0,0,0,0,0,0,0,15,206,254,254,254,202,66,0,0,0,0,0,21,161,254,254,245,31,0,0,0,0,0,0,0,0,0,0,0,60,212,254,254,254,194,48,48,34,41,48,209,254,254,254,171,0,0,0,0,0,0,0,0,0,0,0,0,0,86,243,254,254,254,254,254,233,243,254,254,254,254,254,86,0,0,0,0,0,0,0,0,0,0,0,0,0,0,114,254,254,254,254,254,254,254,254,254,254,239,86,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,182,254,254,254,254,254,254,254,254,243,70,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,76,146,254,255,254,255,146,19,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,141,139,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,106,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,185,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,89,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,146,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,156,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,255,255,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,63,254,254,62,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,220,179,6,0,0,0,0,0,0,0,0,9,77,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28,247,17,0,0,0,0,0,0,0,0,27,202,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,242,155,0,0,0,0,0,0,0,0,27,254,63,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,160,207,6,0,0,0,0,0,0,0,27,254,65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,127,254,21,0,0,0,0,0,0,0,20,239,65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,77,254,21,0,0,0,0,0,0,0,0,195,65,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,70,254,21,0,0,0,0,0,0,0,0,195,142,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,56,251,21,0,0,0,0,0,0,0,0,195,227,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,222,153,5,0,0,0,0,0,0,0,120,240,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,67,251,40,0,0,0,0,0,0,0,94,255,69,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,234,184,0,0,0,0,0,0,0,19,245,69,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,234,169,0,0,0,0,0,0,0,3,199,182,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,154,205,4,0,0,26,72,128,203,208,254,254,131,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,61,254,129,113,186,245,251,189,75,56,136,254,73,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,216,233,233,159,104,52,0,0,0,38,254,73,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,254,73,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,18,254,73,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,206,106,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,186,159,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,209,101,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,25,130,155,254,254,254,157,30,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,103,253,253,253,253,253,253,253,253,114,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,208,253,253,253,253,253,253,253,253,253,253,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,253,253,253,253,253,253,253,253,253,253,253,215,101,3,0,0,0,0,0,0,0,0,0,0,0,0,23,210,253,253,253,248,161,222,222,246,253,253,253,253,253,39,0,0,0,0,0,0,0,0,0,0,0,0,136,253,253,253,229,77,0,0,0,70,218,253,253,253,253,215,91,0,0,0,0,0,0,0,0,0,0,5,214,253,253,253,195,0,0,0,0,0,104,224,253,253,253,253,215,29,0,0,0,0,0,0,0,0,0,116,253,253,253,247,75,0,0,0,0,0,0,26,200,253,253,253,253,216,4,0,0,0,0,0,0,0,0,254,253,253,253,195,0,0,0,0,0,0,0,0,26,200,253,253,253,253,5,0,0,0,0,0,0,0,0,254,253,253,253,99,0,0,0,0,0,0,0,0,0,25,231,253,253,253,36,0,0,0,0,0,0,0,0,254,253,253,253,99,0,0,0,0,0,0,0,0,0,0,223,253,253,253,129,0,0,0,0,0,0,0,0,254,253,253,253,99,0,0,0,0,0,0,0,0,0,0,127,253,253,253,129,0,0,0,0,0,0,0,0,254,253,253,253,99,0,0,0,0,0,0,0,0,0,0,139,253,253,253,90,0,0,0,0,0,0,0,0,254,253,253,253,99,0,0,0,0,0,0,0,0,0,78,248,253,253,253,5,0,0,0,0,0,0,0,0,254,253,253,253,216,34,0,0,0,0,0,0,0,33,152,253,253,253,107,1,0,0,0,0,0,0,0,0,206,253,253,253,253,140,0,0,0,0,0,30,139,234,253,253,253,154,2,0,0,0,0,0,0,0,0,0,16,205,253,253,253,250,208,106,106,106,200,237,253,253,253,253,209,22,0,0,0,0,0,0,0,0,0,0,0,82,253,253,253,253,253,253,253,253,253,253,253,253,253,209,22,0,0,0,0,0,0,0,0,0,0,0,0,1,91,253,253,253,253,253,253,253,253,253,253,213,90,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,18,129,208,253,253,253,253,159,129,90,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,141,202,254,193,44,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,165,254,179,163,249,244,72,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,135,254,150,0,0,189,254,243,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,82,248,209,5,0,0,164,236,254,115,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,211,254,58,0,0,0,0,33,230,212,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,119,254,156,3,0,0,0,0,18,230,254,33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,212,254,35,0,0,0,0,0,33,254,254,33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,116,254,154,3,0,0,0,0,0,33,254,254,33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,124,254,115,0,0,0,0,0,0,160,254,239,23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,203,254,35,0,0,0,0,0,0,197,254,178,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,239,221,11,0,0,0,0,0,0,198,255,123,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,238,178,0,0,0,0,0,0,10,219,254,96,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30,249,204,0,0,0,0,0,0,25,235,254,62,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,26,243,204,0,0,0,0,0,0,91,254,248,36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,254,204,0,0,0,0,0,67,241,254,133,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,254,214,7,0,0,0,50,242,254,194,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,193,254,78,0,0,19,128,254,195,36,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,103,254,222,74,143,235,254,228,83,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30,242,254,254,254,254,252,84,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,64,158,200,174,61,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,82,152,71,51,51,21,41,51,51,51,51,113,193,152,30,0,0,0,0,0,0,0,0,0,0,0,0,0,122,253,252,253,252,223,243,253,252,253,252,253,252,233,30,0,0,0,0,0,0,0,0,0,0,0,0,0,123,102,41,102,102,102,102,102,102,102,162,254,253,142,0,0,0,0,0,0,0,0,0,0,0,0,0,0,203,102,0,0,0,0,0,0,0,0,183,253,212,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,203,142,0,0,0,0,0,0,0,11,213,254,91,0,0,0,0,0,0,0,0,0,0,0,0,0,0,41,243,102,0,0,0,0,0,0,0,51,252,172,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,41,223,102,0,0,0,0,0,0,0,214,253,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,0,0,0,0,253,252,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,62,254,253,41,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,102,253,171,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,163,254,91,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,203,253,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,253,254,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,252,253,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,253,254,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,51,252,213,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,152,253,82,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,233,252,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,255,253,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,253,212,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,21,130,190,254,254,250,175,135,96,96,16,4,0,0,0,0,0,0,0,0,0,0,0,0,0,26,102,186,254,254,248,222,222,225,254,254,254,254,254,206,112,4,0,0,0,0,0,0,0,0,0,0,0,207,254,254,177,117,39,0,0,56,248,102,48,48,103,192,254,135,0,0,0,0,0,0,0,0,0,0,0,91,111,36,0,0,0,0,0,72,92,0,0,0,0,12,224,210,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,50,139,240,254,66,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,121,220,254,244,194,15,0,0,0,0,0,0,0,0,0,0,0,0,0,8,107,112,112,112,87,112,141,218,248,177,68,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,77,221,254,254,254,254,254,225,104,39,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,32,32,32,32,130,215,195,47,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,111,231,174,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,47,18,0,0,0,0,0,0,0,0,0,40,228,205,35,0,0,0,0,0,0,0,0,0,0,0,0,22,234,42,0,0,0,0,0,0,0,0,0,0,56,212,226,38,0,0,0,0,0,0,0,0,0,0,0,96,157,0,0,0,0,0,0,0,0,0,0,0,0,30,215,188,9,0,0,0,0,0,0,0,0,0,0,96,142,0,0,0,0,0,0,0,0,0,0,0,0,0,86,254,68,0,0,0,0,0,0,0,0,0,0,71,202,15,0,0,0,0,0,0,0,0,0,0,0,0,6,214,151,0,0,0,0,0,0,0,0,0,0,10,231,86,2,0,0,0,0,0,0,0,0,0,0,0,0,191,207,0,0,0,0,0,0,0,0,0,0,0,93,248,129,7,0,0,0,0,0,0,0,0,0,0,117,238,112,0,0,0,0,0,0,0,0,0,0,0,0,94,248,209,73,12,0,0,0,0,0,0,42,147,252,136,9,0,0,0,0,0,0,0,0,0,0,0,0,0,48,160,215,230,158,74,64,94,153,223,250,214,105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,129,189,234,224,255,194,134,75,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,41,149,156,179,254,254,201,119,46,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,147,241,253,253,254,253,253,253,253,245,160,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,31,224,253,253,180,174,175,174,174,174,174,223,247,145,6,0,0,0,0,0,0,0,0,0,0,0,0,7,197,254,253,165,2,0,0,0,0,0,0,12,102,184,16,0,0,0,0,0,0,0,0,0,0,0,0,152,253,254,162,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,235,254,158,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,74,250,253,15,0,0,0,16,20,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,199,253,253,0,0,25,130,235,254,247,145,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,253,253,177,100,219,240,253,253,254,253,253,125,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,193,253,253,254,253,253,200,155,155,238,253,229,23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,61,249,254,241,150,30,0,0,0,215,254,254,58,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36,39,30,0,0,0,0,0,214,253,234,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,41,241,253,183,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,201,253,253,102,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,114,254,253,154,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,62,254,255,241,30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,118,235,253,249,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,55,81,0,102,211,253,253,253,135,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,79,243,234,254,253,253,216,117,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48,245,253,254,207,126,27,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,60,136,136,147,254,255,199,111,18,9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,25,152,253,253,253,253,253,253,253,253,253,124,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,135,225,244,253,202,200,181,164,216,253,253,211,151,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30,149,78,3,0,0,0,20,134,253,253,224,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,28,206,253,253,224,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,78,253,253,253,224,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,99,234,253,253,224,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,142,220,219,236,253,253,240,121,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,253,253,253,253,235,233,253,253,185,53,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,150,194,194,194,53,40,97,253,253,170,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,122,253,253,170,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,55,237,253,253,170,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,130,253,253,253,170,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,12,120,193,253,253,214,28,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,153,253,253,253,253,212,30,0,0,0,0,0,0,0,0,0,0,0,0,0,33,136,70,6,0,27,67,186,253,253,253,253,234,31,0,0,0,0,0,0,0,0,0,0,0,0,0,26,231,253,253,191,183,223,253,253,253,253,172,216,112,0,0,0,0,0,0,0,0,0,0,0,0,0,0,36,215,253,253,253,253,253,253,253,253,253,47,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,87,223,253,253,253,244,152,223,223,109,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,67,50,176,148,78,16,0,12,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,24,24,97,253,253,253,253,255,180,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,30,186,252,252,253,252,252,252,252,253,252,227,29,0,0,0,0,0,0,0,0,0,0,0,0,0,0,38,155,252,252,252,253,252,252,227,79,222,252,252,129,0,0,0,0,0,0,0,0,0,0,0,0,0,85,233,252,252,252,252,253,252,252,202,11,180,252,252,119,0,0,0,0,0,0,0,0,0,0,0,0,43,240,253,252,252,252,252,253,252,252,244,126,201,252,252,150,0,0,0,0,0,0,0,0,0,0,0,7,212,253,255,253,253,253,232,221,42,0,104,253,255,253,205,21,0,0,0,0,0,0,0,0,0,0,0,25,223,252,253,252,252,214,18,0,0,34,215,252,253,223,56,0,0,0,0,0,0,0,0,0,0,0,0,0,99,246,253,252,252,77,0,7,70,203,252,252,173,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,42,253,252,252,236,103,160,252,252,218,108,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,148,252,252,252,252,253,231,106,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,253,253,253,253,255,159,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,43,118,252,240,244,252,253,231,37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,19,164,246,253,187,50,99,246,253,252,69,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,232,252,203,58,0,0,135,253,252,121,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,43,246,252,200,11,0,0,0,116,253,252,69,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,162,253,192,11,0,0,0,0,179,255,253,69,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,178,252,119,0,5,47,47,140,244,253,252,69,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,186,252,227,184,191,252,252,252,252,253,240,50,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,144,227,252,252,253,252,252,252,252,98,37,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,48,137,242,253,231,137,137,32,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,48,143,186,244,143,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,83,209,253,252,252,252,252,192,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,166,241,252,253,252,170,162,252,252,113,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,61,234,252,252,243,121,44,2,21,245,252,122,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,80,252,252,243,163,50,0,0,0,5,101,88,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,105,234,252,210,88,0,0,0,0,74,199,240,43,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,252,210,21,0,4,12,41,231,249,252,252,55,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,242,252,218,154,154,184,252,253,252,252,248,184,22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,209,252,252,252,252,252,252,253,252,252,196,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,57,142,95,142,61,81,253,252,209,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,177,255,230,86,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,124,252,245,57,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,135,252,252,86,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,79,248,252,233,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,231,252,202,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,20,175,248,252,136,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,109,252,252,159,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,33,218,252,252,192,141,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,132,252,252,252,205,74,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,132,252,252,146,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,169,207,33,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,168,254,105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,84,249,254,105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,89,254,254,105,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,89,254,193,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,89,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7,204,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,89,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,13,209,254,178,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,37,209,254,254,69,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,107,254,254,254,184,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,187,254,254,134,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,254,155,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,254,238,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,254,254,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,254,231,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,255,87,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,173,254,87,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,87,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,254,87,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,64,128,255,191,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,64,191,255,255,255,191,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,191,255,255,255,255,255,255,255,191,191,191,128,128,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,128,0,0,0,0,0,0,0,0,0,0,0,0,0,128,128,191,128,128,191,255,255,255,255,255,255,255,255,191,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,191,255,255,255,255,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128,255,255,255,255,255,191,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128,255,255,255,255,255,128,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,64,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128,255,255,255,255,255,191,64,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,255,255,255,255,255,255,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,128,191,255,255,255,255,0,0,0,0,0,0,0,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值