自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

蒙奇D索大的博客

学习笔记及心得分享

  • 博客(320)
  • 收藏
  • 关注

原创 【11408学习记录】掌握“三步法”与“剥洋葱术”:高效拆解英语长难句

【11408学习记录】掌握“三步法”与“剥洋葱术”:高效拆解英语长难句通过2008英语一的真题例句,巩固长难句分析的三步法……

2025-12-30 17:44:23 905

原创 【数据结构】排序算法精讲 | 快速排序全解:高效实现、性能评估、实战剖析

【数据结构】排序算法精讲 | 快速排序全解:高效实现、性能评估、实战剖析详细介绍快速排序的C语言实现……

2025-12-30 17:44:13 1411

原创 【11408学习记录】考研英语长难句“三步拆分法”实战:手把手带你解析真题复杂句​

【11408学习记录】考研英语长难句“三步拆分法”实战:手把手带你解析真题复杂句​详细记录2020英语二阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-28 18:28:48 849

原创 【数据结构】排序算法精讲 | 快速排序全解:分治思想、核心步骤与示例演示

【数据结构】排序算法精讲 | 快速排序全解:分治思想、核心步骤与示例演示详细介绍 快速排序的基本思想以及核心步骤,并通过实例进行步骤的直观演示……

2025-12-28 18:17:26 1064

原创 【11408学习记录】考研英语长难句拆解秘籍:“三步法”一步到位,搞定真题中复杂的从句嵌套

【11408学习记录】考研英语长难句拆解秘籍:“三步法”一步到位,搞定真题中复杂的从句嵌套详细记录2020英语二阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-28 08:56:54 525

原创 【数据结构】排序算法精讲 | 交换排序全解:交换思想、效率对比与实战代码剖析

【数据结构】排序算法精讲 | 交换排序全解:交换思想、效率对比与实战代码剖析详细介绍 交换排序 的基本思想以及冒泡排序的C语言实现……

2025-12-28 08:56:20 791

原创 【11408学习记录】考研英语真题长难句精讲:三步拆解法,攻克2020英语一复杂句

【11408学习记录】考研英语真题长难句精讲:三步拆解法,攻克2020英语一复杂句详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-27 08:36:50 752

原创 【数据结构】排序算法精讲 | 希尔排序全解:增量优化、性能跃升、实战剖析

【数据结构】排序算法精讲 | 希尔排序全解:增量优化、性能跃升、实战剖析详细介绍 希尔排序的算法思想以及排序过程,并通过C语言实现了希尔排序……

2025-12-27 08:36:16 1147

原创 【11408学习记录】考研英语真题长难句精讲:三步拆解2020年阅读Text4复杂句

【11408学习记录】考研英语真题长难句精讲:三步拆解2020年阅读Text4复杂句详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-26 10:13:34 679

原创 【数据结构】排序算法精讲|折半插入排序全解:高效优化、性能对比、实战剖析

【数据结构】排序算法精讲|折半插入排序全解:高效优化、性能对比、实战剖析详细介绍 折半插入排序 的算法思想以及C语言实现……

2025-12-26 10:13:09 825

原创 【11408学习记录】攻克考研英语长难句|真题实战:三步拆解2020年阅读

【11408学习记录】攻克考研英语长难句|真题实战:三步拆解2020年阅读详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-25 10:26:47 829

原创 【数据结构】排序算法精讲 | 插入排序全解:稳定性、复杂度与实战代码剖析

【数据结构】排序算法精讲 | 插入排序全解:稳定性、复杂度与实战代码剖析详细介绍排序的基本概念以及插入排序的C语言实现……

2025-12-25 10:26:23 828

原创 【11408学习记录】考研英语长难句攻克 | 三步法拆解2020年真题复合句​

【11408学习记录】考研英语长难句攻克 | 三步法拆解2020年真题复合句​详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-24 18:31:31 666

原创 【数据结构】考研408 | 散列查找性能剖析:装填因子、冲突策略与优化全攻略

【数据结构】考研408 | 散列查找性能剖析:装填因子、冲突策略与优化全攻略详细介绍 哈希表的性能 的重要知识点……

2025-12-24 18:31:08 974

原创 【11408学习记录】考研英语长难句拆解三步法:三步拆解2020年真题,攻克阅读难点​

【11408学习记录】考研英语长难句拆解三步法:三步拆解2020年真题,攻克阅读难点​详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-20 23:35:25 942

原创 【数据结构】考研408 | 伪随机探测与双重散列精讲:散列的艺术与均衡之道

【数据结构】考研408 | 伪随机探测与双重散列精讲:散列的艺术与均衡之道详细介绍 伪随机法 与 双散列法 的重要知识点 ……

2025-12-20 23:32:56 1141

原创 【11408学习记录】考研数学概率论核心考点:随机变量的独立性判定与性质

【11408学习记录】考研数学概率论核心考点:随机变量的独立性判定与性质详细记录考研数学——概率论与数理统计中随机变量的相互独立性的重要知识点,并通过每日一句巩固英语长难句分析能力……

2025-12-19 18:49:11 817

原创 【数据结构】考研408 | 平方探测法精讲:跳跃探查的艺术与聚集迷思

【数据结构】考研408 | 平方探测法精讲:跳跃探查的艺术与聚集迷思详细介绍平方探测法的重要知识点……

2025-12-19 18:45:27 1719

原创 【11408学习记录】考研英语|保姆级长难句拆解教程:三步拿下真题复杂句(2020英语一阅读)

【11408学习记录】考研英语|保姆级长难句拆解教程:三步拿下真题复杂句(2020英语一阅读)详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-18 23:13:23 596

原创 【数据结构】考研408 | 开放定址法精讲:连续探测的艺术与代价

【数据结构】考研408 | 开放定址法精讲:连续探测的艺术与代价详细介绍开放定址法——线性探测法的重要知识点……

2025-12-18 23:10:27 1236

原创 【11408学习记录】考研英语长难句拆解三步法:一招搞定2020年英语一真题长难句!

【11408学习记录】考研英语长难句拆解三步法:一招搞定2020年英语一真题长难句!详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-17 22:37:23 869

原创 【数据结构】考研408 | 冲突解决精讲: 拉链法——链式存储的艺术与优化

【数据结构】考研408 | 冲突解决精讲: 拉链法——链式存储的艺术与优化详细介绍哈希冲突的第一种解决方法——拉链法……

2025-12-17 22:37:01 1039

原创 【11408学习记录】考研英语长难句“三步拆解法”精讲:2020年英语一真题实战​

【11408学习记录】考研英语长难句“三步拆解法”精讲:2020年英语一真题实战​详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-16 16:20:30 887

原创 【数据结构】考研408 | 散列函数构造精解:从直接定址到平方取中的原理、场景与实战权衡

【数据结构】考研408 | 散列函数构造精解:从直接定址到平方取中的原理、场景与实战权衡详细介绍哈希函数的构造方法,深入探讨除留余数法的模数选择原因……

2025-12-16 16:20:09 1187

原创 【11408学习记录】考研英语|三步搞定真题长难句

【11408学习记录】考研英语|三步搞定真题长难句详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-15 16:32:24 490

原创 【数据结构】考研408 | 散列查找探秘:从数学基石到冲突世界的高效查找入门

【数据结构】考研408 | 散列查找探秘:从数学基石到冲突世界的高效查找入门详细介绍 散列查找 的基本概念以及基础知识点,为 散列查找 内容的学习奠定坚实的基础……

2025-12-15 16:32:03 890

原创 【11408学习记录】考研英语长难句拆解神器:手把手教你分析真题复杂句​

【11408学习记录】考研英语长难句拆解神器:手把手教你分析真题复杂句​详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-14 11:25:16 514

原创 【数据结构】考研408|从B树到B+树:多路平衡的优化形态与数据库索引基石

【数据结构】考研408|从B树到B+树:多路平衡的优化形态与数据库索引基石详细介绍 B+树 的基本概念以及B树与B+树这二者之间的区别……

2025-12-14 11:24:52 1421

原创 【11408学习记录】考研英语长难句攻克指南:三步拆解法+核心词汇拓展,让你的阅读又快又准​

【11408学习记录】考研英语长难句攻克指南:三步拆解法+核心词汇拓展,让你的阅读又快又准​详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-13 08:22:56 708

原创 【数据结构】考研408 | B树收官:插入与删除的平衡艺术——分裂、合并与借位

【数据结构】考研408 | B树收官:插入与删除的平衡艺术——分裂、合并与借位详细介绍 B树的基本操作——插入与删除的重要知识点……

2025-12-13 08:22:29 1326

原创 【11408学习记录】考研英语真题长难句精讲:从“断句”到“翻译”的深度剖析

【11408学习记录】考研英语真题长难句精讲:从“断句”到“翻译”的深度剖析详细记录2020英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-12 08:56:23 889

原创 【数据结构】考研408 | B树探秘:从查找操作到树高性能分析

【数据结构】考研408 | B树探秘:从查找操作到树高性能分析详细介绍B树的查找操作以及高度性能分析的重要知识点……

2025-12-12 08:55:37 874

原创 【11408学习记录】​​一招搞定考研英语长难句:从词汇到结构的精讲精练​

【11408学习记录】​​一招搞定考研英语长难句:从词汇到结构的精讲精练​详细记录2019英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-11 19:06:43 866

原创 【数据结构】考研408 | 红黑树收官与B树启航:删除策略与多路平衡解析

【数据结构】考研408 | 红黑树收官与B树启航:删除策略与多路平衡解析简单对红黑树进行一个收尾,并从多路查找树开始,详细介绍 B树 的基本概念……

2025-12-11 19:06:14 1064

原创 【11408学习记录】考研英语长难句“三步破解法”:真题精讲(2019年Text4)​

【11408学习记录】考研英语长难句“三步拆解法”:真题精讲(2019年Text4)​详细记录2019英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-10 09:49:11 585

原创 【数据结构】考研408 | 红黑树插入:一个口诀搞定“叔叔”脸色,实现近似平衡

【数据结构】考研408 | 红黑树插入:一个口诀搞定“叔叔”脸色,实现近似平衡详细介绍红黑树的插入操作,并通过图示详细介绍插入的具体过程……

2025-12-10 09:48:50 1121

原创 【11408学习记录】考研人必备!英语长难句攻克神器:每日一句真题精讲

【11408学习记录】考研人必备!英语长难句攻克神器:每日一句真题精讲详细记录2019英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-12-08 07:21:34 730

原创 【数据结构】考研408|数据结构高分堡垒:攻克红黑树五大性质与适度平衡思想

【数据结构】考研408|数据结构高分堡垒:攻克红黑树五大性质与适度平衡思想详细介绍 【数据结构——第七章——查找】中树形查找——红黑树的基本定义与性质的重要知识点……

2025-12-08 07:21:04 1293

原创 【11408学习记录】考研英语每日一句精析:搞定长难句,高分不再难​

【11408学习记录】考研英语每日一句精析:搞定长难句,高分不再难​详细记录2019英语一阅读理解长难句分析过程,通过真题长难句,巩固长难句分析能力……

2025-11-18 20:06:29 709

原创 【计算机网络】考研408核心考点|循环冗余码(CRC)详解:从多项式原理到检错纠错实战

【计算机网络】考研408核心考点|循环冗余码(CRC)详解:从多项式原理到检错纠错实战详细介绍 【计算机网络——第三章——数据链路层】中差错控制的纠错编码——CRC 的重要知识点……

2025-11-18 20:05:39 1275

C语言/数据结构-树与二叉树-C语言实现树与森林的遍历

【数据结构】第五章——树与二叉树——C语言实现树与二叉树 本资源中有三个文件: - <Tree.h>——树与森林遍历算法头文件 - <Tree.c>——树与森林遍历算法源文件 - <test.c>——树与森林遍历算法测试源文件 在本资源中通过孩子兄弟表示法实现了一棵度为3的树、森林以及对应二叉树的创建、遍历与销毁。 同时为了区分森林与其生成的二叉树,我们还在森林转换二叉树中实现了通过对森林中所有树的先序遍历创建一棵新的二叉树。 通过对树的先根遍历、后根遍历,森林的先序遍历、后序遍历,以及对应二叉树的先序、中序和后序遍历所获得的遍历序列的对比,我们得到了这三者之间的关系: - 树的先根遍历 == 对应二叉树的先序遍历 - 树的后根遍历 == 对应二叉树的中序遍历 - 森林的先根遍历 == 对应二叉树的先序遍历 - 森林的中序遍历 == 对应二叉树的中序遍历 树的遍历算法的底层逻辑: - 先根遍历 - 先访问根结点 - 再从左到右依次访问各棵子树 - 后根遍历 - 先从左到右依次访问各棵子树 - 再访问根结点 本资源与文章【数据结构】——C语言实现树与森林的遍历绑定

2025-03-19

数据结构第五章-树与二叉树二叉树的C语言实现代码

该资源中为【数据结构】专栏——C语言实现二叉树篇章中涉及到的代码 代码中包含以下内容: 1. 二叉树相关头文件: - 二叉链表的数据类型声明 - 链队列结点类型声明 - 链队列类型声明 - 二叉树基本功能(二叉树的初始化、创建BST、通过遍历序列创建二叉树、销毁二叉树、访问根结点、先序遍历、中序遍历、后序遍历、层序遍历、求深度、求结点总数、求第K层结点总数、求叶结点数)接口声明 - 链队列的初始化/入队/出队/判空等函数接口声明 - 测试函数接口声明 2. 二叉树相关.C文件: - 二叉树初始化的实现 - 创建BST的实现 - 通过遍历序列创建二叉树的实现 - 销毁二叉树的实现 - 访问根结点的实现 - 先序遍历、中序遍历、后序遍历的递归实现 - 层序遍历的实现 - 求二叉树深度的递归实现 - 求二叉树结点总数的递归实现 - 求二叉树第K层结点数的递归实现 - 求二叉树叶结点数的递归实现 - 功能测试函数的实现——通过层序遍历创建二叉树、创建BST 3. 队列基本功能实现文件

2024-05-22

人工智能-Ollama安装包

该资源为Ollama官网获取的安装文件,内含3种操作系统所对应的文件: 【Windows版】 - 文件为对应的安装程序OllamaSetup.exe 【MacOS】 - 文件为对应的安装包Ollama-darwin.zip 【Linux】 - 文件为存放了对应的下载指令记事本:下载指令.txt 所有的内容均为Ollama官方网站获取,由于官方网站的网络不稳定,这里为了方便大家获取对应资源,博主直接为大家提供相关资源!!! 以下是不同系统快速下载Ollama的方法: - Windows系统:下载完成后,双击下载的.exe文件,按照安装向导完成安装。 - macOS系统:下载解压后,将Ollama.app移动到/Applications目录中。 - Linux系统:打开终端,执行命令 `curl -fsSL https://ollama.com/install.sh | sh` 即可完成安装。

2025-02-09

数据结构第五章-树与二叉树-C语言实现线索二叉树

【数据结构】第五章——树与二叉树——C语言实现线索二叉树 资源内包含7个文件: - 3个头文件 - BiTree.h ——二叉树头文件,用于对二叉树的数据结构的定义、实现算法的声明 - ThreadTree.h —— 线索二叉树头文件,用于对线索二叉树的数据结构的定义、实现算法的声明 - test.h —— 算法测试头文件,用于引入需要使用的标准库、测试算法的声明 - 4个源文件 - BiTree.c —— 二叉树源文件,用于实现二叉树的创建、打印、销毁等算法 - ThreadTree.c —— 线索二叉树源文件,用于实现二叉树转化线索二叉树、线索二叉树的创建、二叉树的线索化、线索二叉树的遍历、线索二叉树的打印、线索二叉树的销毁等算法 - test.c —— 测试源文件,用于实现二叉树测试、二叉树转为线索二叉树测试、线索二叉树测试、性能测试等算法 - main.c ——main函数源文件,用于对所实现的算法进行测试 本资源主要用于线索二叉树的相关算法实现,因此对二叉树的基本操作并没有过多的实现,该资源与博客【数据结构】C语言实现线索二叉树绑定。

2025-03-16

人工智能-DeepSeek满血、免费、无卡顿软件-问小白安装包

问小白是北京元石科技有限公司基于自研元石大模型开发的多功能 AI 智能助手,与满血版 DeepSeek - R1 深度融合,为用户带来丰富且优质的服务体验。 从技术原理上看,它基于 Transformer 架构,融合深度学习与自然语言处理技术,通过大量数据训练掌握语言规律,结合 DeepSeek - R1 强大的推理能力,能精准回应各类问题。 在使用上,下载安装极为便捷。电脑用户可在官网首页找到下载链接,按提示完成适配版本的安装;手机用户在 App Store 或安卓应用商店搜索 “问小白” 即可一键下载。注册登录方式多样,支持微信和手机号登录。登录后,用户在 AI 对话界面既能文字输入,询问生活常识、专业知识等,也能点击小喇叭图标,通过语音输入提问,而且支持多轮对话,根据追问不断优化回答。 问小白的功能十分强大。它支持 PDF、Word、Excel 等多种格式文档上传,能快速提炼关键信息;具备强大的图像识别和分析能力,可识别植物、解读图文;还能通过拍照识别,为学习、生活提供便利。 在应用场景上,问小白也表现出色。对于学生群体,它能解答数理化难题,辅助知识总结复习;职场人士可用它撰写报

2025-02-18

人工智能-AnythingLLM(Linux)安装文档

AnythingLLM 是 Mintplex Labs 推出的开源全栈应用程序。其具体介绍如下: 功能特点 多模型支持:兼容 OpenAI、Anthropic 等众多知名 LLM 供应商的模型,也支持开源的 LLaMA 等模型,可自由切换。 多模态支持:除闭源 LLM 外,对各种开源 LLM 也提供支持,丰富了应用多样性。 多用户管理:Docker 版本支持多用户实例及权限管理,便于团队协作。 文档处理便捷:支持 PDF、TXT、DOCX 等多种文档导入管理,可拖放操作,有清晰引用方式。 可定制扩展:有自定义 AI 代理、完整开发者 API,还支持网站嵌入自定义聊天组件。 技术架构 前端:基于 Vitejs 和 React 构建,操作界面直观友好。 服务器:采用 Nodejs Express 服务器,负责交互及向量数据库管理。 其他:包含用于构建部署的 Docker 脚本,还有嵌入模块、浏览器扩展等。 应用场景 知识管理:能整理和查询内部文档或知识库。 客户支持:可构建 AI 客服机器人处理客户咨询。 内容生成:辅助写作、总结等任务。 研究分析:帮助分析大量文档和数据集以提取关键信息。

2025-02-18

人工智能-AnythingLLM(MacOS Intel)安装包

AnythingLLM 是 Mintplex Labs 推出的开源全栈应用程序。其具体介绍如下: 功能特点 多模型支持:兼容 OpenAI、Anthropic 等众多知名 LLM 供应商的模型,也支持开源的 LLaMA 等模型,可自由切换。 多模态支持:除闭源 LLM 外,对各种开源 LLM 也提供支持,丰富了应用多样性。 多用户管理:Docker 版本支持多用户实例及权限管理,便于团队协作。 文档处理便捷:支持 PDF、TXT、DOCX 等多种文档导入管理,可拖放操作,有清晰引用方式。 可定制扩展:有自定义 AI 代理、完整开发者 API,还支持网站嵌入自定义聊天组件。 技术架构 前端:基于 Vitejs 和 React 构建,操作界面直观友好。 服务器:采用 Nodejs Express 服务器,负责交互及向量数据库管理。 其他:包含用于构建部署的 Docker 脚本,还有嵌入模块、浏览器扩展等。 应用场景 知识管理:能整理和查询内部文档或知识库。 客户支持:可构建 AI 客服机器人处理客户咨询。 内容生成:辅助写作、总结等任务。 研究分析:帮助分析大量文档和数据集以提取关键信息。

2025-02-18

人工智能-AnythingLLM(MacOS Silicon)安装包

AnythingLLM 是 Mintplex Labs 推出的开源全栈应用程序。其具体介绍如下: 功能特点 多模型支持:兼容 OpenAI、Anthropic 等众多知名 LLM 供应商的模型,也支持开源的 LLaMA 等模型,可自由切换。 多模态支持:除闭源 LLM 外,对各种开源 LLM 也提供支持,丰富了应用多样性。 多用户管理:Docker 版本支持多用户实例及权限管理,便于团队协作。 文档处理便捷:支持 PDF、TXT、DOCX 等多种文档导入管理,可拖放操作,有清晰引用方式。 可定制扩展:有自定义 AI 代理、完整开发者 API,还支持网站嵌入自定义聊天组件。 技术架构 前端:基于 Vitejs 和 React 构建,操作界面直观友好。 服务器:采用 Nodejs Express 服务器,负责交互及向量数据库管理。 其他:包含用于构建部署的 Docker 脚本,还有嵌入模块、浏览器扩展等。 应用场景 知识管理:能整理和查询内部文档或知识库。 客户支持:可构建 AI 客服机器人处理客户咨询。 内容生成:辅助写作、总结等任务。 研究分析:帮助分析大量文档和数据集以提取关键信息。

2025-02-18

人工智能-Anything(Windows ARM)安装包

AnythingLLM 是 Mintplex Labs 推出的开源全栈应用程序。其具体介绍如下: 功能特点 多模型支持:兼容 OpenAI、Anthropic 等众多知名 LLM 供应商的模型,也支持开源的 LLaMA 等模型,可自由切换。 多模态支持:除闭源 LLM 外,对各种开源 LLM 也提供支持,丰富了应用多样性。 多用户管理:Docker 版本支持多用户实例及权限管理,便于团队协作。 文档处理便捷:支持 PDF、TXT、DOCX 等多种文档导入管理,可拖放操作,有清晰引用方式。 可定制扩展:有自定义 AI 代理、完整开发者 API,还支持网站嵌入自定义聊天组件。 技术架构 前端:基于 Vitejs 和 React 构建,操作界面直观友好。 服务器:采用 Nodejs Express 服务器,负责交互及向量数据库管理。 其他:包含用于构建部署的 Docker 脚本,还有嵌入模块、浏览器扩展等。 应用场景 知识管理:能整理和查询内部文档或知识库。 客户支持:可构建 AI 客服机器人处理客户咨询。 内容生成:辅助写作、总结等任务。 研究分析:帮助分析大量文档和数据集以提取关键信息。

2025-02-18

人工智能-AnythingLLM(Windows x64)安装包

AnythingLLM 是 Mintplex Labs 推出的开源全栈应用程序。其具体介绍如下: 功能特点 多模型支持:兼容 OpenAI、Anthropic 等众多知名 LLM 供应商的模型,也支持开源的 LLaMA 等模型,可自由切换。 多模态支持:除闭源 LLM 外,对各种开源 LLM 也提供支持,丰富了应用多样性。 多用户管理:Docker 版本支持多用户实例及权限管理,便于团队协作。 文档处理便捷:支持 PDF、TXT、DOCX 等多种文档导入管理,可拖放操作,有清晰引用方式。 可定制扩展:有自定义 AI 代理、完整开发者 API,还支持网站嵌入自定义聊天组件。 技术架构 前端:基于 Vitejs 和 React 构建,操作界面直观友好。 服务器:采用 Nodejs Express 服务器,负责交互及向量数据库管理。 其他:包含用于构建部署的 Docker 脚本,还有嵌入模块、浏览器扩展等。 应用场景 知识管理:能整理和查询内部文档或知识库。 客户支持:可构建 AI 客服机器人处理客户咨询。 内容生成:辅助写作、总结等任务。 研究分析:帮助分析大量文档和数据集以提取关键信息。

2025-02-18

人工智能AI大语言模型-DeepSeek学习指南

本资源是由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队推出的《DeepSeek从入门到精通2025》 - 背景:2025年伊始,DeepSeek在全球AI业界引发广泛关注,它以2048张H800 GPU,仅用两个月就训练出了一个媲美全球顶尖水平的模型,打破了大模型军备竞赛的既定逻辑。 - 内容:《DeepSeek从入门到精通2025》有104页,内容涵盖DeepSeek的核心技术、应用场景、提示词优化等,还介绍了如何避免AI幻觉、如何精准设计提示语等实战经验。 - 影响:这份报告为用户提供了全面了解和使用DeepSeek的指南,有助于推动DeepSeek在各个领域的应用和普及。多家公司宣布将DeepSeek集成到自己的产品中,如中国移动的移动云全面上线DeepSeek,联通云基于“星罗”平台实现多规格DeepSeek-R1模型适配,浙文互联将DeepSeek-R1作为智慧内容生态平台的核心决策模型等。 - PS:本文件从中国高等教育培训中心订阅号免费获取

2025-02-10

Python环境安装包(社区版)

资源包中包含2个内容: 1. Python安装包 2.PyCharm社区版安装包 博客【Python】专栏——初识Python中有手把手的介绍Python环境搭建的详细流程,有需要的朋友可以配合博客内容进行使用。 Python这门高级编程语言对于现在的IT从业者来说是一项需要掌握的必备技能,在现在的大环境下,能够多掌握一门编程语言,那么在求值的过程中相较于别人就能多一个加分项。 对于Python而言,其目前被广泛的运用在: 1.科学计算&数据分析 2.Web开发(搭建网站) 3.自动化运维 4.人工智能 5.爬虫程序 6.自动化测试 等多个领域中。 Python搭配C++/JAVA能够帮助各位IT从业者在应聘时能够从一众应聘者中脱颖而出。因此,想要学习Python的朋友可以先通过本资源以及配套的博客内容来完成学习的第一步——环境的搭建。 为了在人工智能时代不被淘汰,我们都应该抱着一颗求学的心终身学习,不断的提升自身的编程水平。最后祝愿各位朋友在求职的过程中都能找到一份满意的工作。

2024-06-18

PythonPython环境搭建安装包

资源包中包含3个内容: 1. Python安装包 2.PyCharm安装包 3.PyCharm安装包激活插件(激活时间100年) 博客【Python】专栏——初识Python中有手把手的介绍Python环境搭建的详细流程,有需要的朋友可以配合博客内容进行使用。 Python这门高级编程语言对于现在的IT从业者来说是一项需要掌握的必备技能,在现在的大环境下,能够多掌握一门编程语言,那么在求值的过程中相较于别人就能多一个加分项。 对于Python而言,其目前被广泛的运用在: 1.科学计算&数据分析 2.Web开发(搭建网站) 3.自动化运维 4.人工智能 5.爬虫程序 6.自动化测试 等多个领域中。 Python搭配C++/JAVA能够帮助各位IT从业者在应聘时能够从一众应聘者中脱颖而出。因此,想要学习Python的朋友可以先通过本资源以及配套的博客内容来完成学习的第一步——环境的搭建。 为了在人工智能时代不被淘汰,我们都应该抱着一颗求学的心终身学习,不断的提升自身的编程水平。最后祝愿各位朋友在求职的过程中都能找到一份满意的工作。

2024-06-16

C语言-分支与循环、函数、数组等知识点综合应用-C语言实现扫雷小游戏3.0

游戏资源介绍 本次对之前的扫雷游戏进行了重新编写与更新,在此次的游戏实现中新增加了剩余地雷数量统计、地雷标记、地雷标记取消的功能,游戏实现的主体逻辑并未改变,相比于之前的游戏,此次的内容会更加的完善。 游戏功能介绍 1. 开始菜单:供玩家选择开始游戏还是结束游戏 2. 错误提示:玩家选择错误时给予提示 3. 棋盘初始化:在创建好棋盘后可以对棋盘进行出始化(后期会增加初始化样式功能) 4. 棋盘打印;将棋盘打印在屏幕上 5. 地雷设置:在棋盘上随机设置地雷(后期会增加修改地雷数和棋盘大小的功能) 6. 坐标判定:判断玩家输入坐标是否正确 7. 地雷标记:玩家可以主动选择在该坐标点上放置地雷标记 8. 自动排查:当玩家输入的坐标周围没有地雷时,系统会自动进行周围坐标的地雷排查 9. 地雷数量统计:在进行排查时会将坐标周围的地雷数量统计好并显示在对应坐标上 10. 剩余地雷统计:在棋盘左上角新增剩余地雷数量统计 11. 踩雷判定:当玩家输入坐标为地雷时,会提示踩到地雷判定游戏失败 12. 胜利判定:当玩家将安全区全部找到,会提示玩家获得胜利 13.重复游戏:当玩家结束一局游戏后可以再来一局

2023-11-30

C语言-函数、数组、分支与循环-知识点综合应用-扫雷游戏编写(代码有点错误,看看大家能不能发现并进行修改)

资源介绍 本次上传资源为新编写的扫雷游戏,与上一次上传的资源相比内容上有了很大的改动,相比之下功能会更加完善。 本次代码在原先的基础上有新增功能——剩余地雷数统计、地雷标记、取消标记; 功能及描述 1.开始菜单:供玩家选择开始游戏还是结束游戏 2.错误提示:玩家选择错误时给予提示 3.棋盘初始化:在创建好棋盘后可以对棋盘进行出始化(后期会增加初始化样式功能) 4.棋盘打印;将棋盘打印在屏幕上 5.地雷设置:在棋盘上随机设置地雷(后期会增加修改地雷数和棋盘大小的功能) 6.坐标判定:判断玩家输入坐标是否正确 7.地雷标记:玩家可以主动选择在该坐标点上放置地雷标记 8.自动排查:当玩家输入的坐标周围没有地雷时,系统会自动进行周围坐标的地雷排查 9.地雷数量统计:在进行排查时会将坐标周围的地雷数量统计好并显示在对应坐标上 10.剩余地雷统计:在棋盘左上角新增剩余地雷数量统计 11.踩雷判定:当玩家输入坐标为地雷时,会提示踩到地雷判定游戏失败 12.胜利判定:当玩家将安全区全部找出来时,会提示玩家获得胜利 13.重复游戏:当玩家结束一局游戏后可以再来一局游戏

2023-11-28

C语言-游戏编写-扫雷小游戏-游戏代码

C语言小游戏编写——扫雷游戏代码 资源说明: 本资源与咱们接触到的扫雷游戏是有很大区别的,这个资源仅仅是在C语言学习过程中为巩固知识点而进行编写的简易游戏代码。 代码里最重要的板块在于通过函数递归实现的自动排雷功能——当玩家排查的坐标周围没有地雷时,能够主动将周围一块区域全部进行排查直到形成一个由地雷统计数字围成的一块区域。 本资源分享出来仅供大家参考,代码中对必要的功能都有详细的注释,对想要写扫雷游戏的代码但是没有编写头绪的小伙伴会比较友好。 如果各位在学习用C语言编写扫雷游戏的过程中有什么疑问,可以参考这份资源,也可以私信博主。 资源内容: 1.游戏编译环境为VS2019 2.编译语言——C语言 3.菜单代码 4.游戏主体代码 5.游戏头文件代码 6.用户使用代码 7.游戏主体包括:游戏棋盘生成、游戏棋盘打印、游戏棋盘初始化、埋雷、排雷、坐标周围地雷数量统计、自动排雷(递归实现)、游戏胜负判定…… 8.用户使用内容包括:选择开始游戏还是推出游戏、选择错误提示、重复进行游戏、排雷坐标输入、坐标重复提示、踩雷提示、游戏胜利提示、胜利后地雷情况展示……

2023-11-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除