树状数组.

P1801 黑匣子(树状数组+离散化):P1801 黑匣子 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题目描述

Black Box 是一种原始的数据库。它可以储存一个整数数组,还有一个特别的变量 $i$。最开始的时候 Black Box 是空的.而 $i=0$。这个 Black Box 要处理一串命令。

命令只有两种:

- `ADD(x)`:把 $x$ 元素放进 Black Box;

- `GET`:$i$ 加 $1$,然后输出 Black Box 中第 $i$ 小的数。

记住:第 $i$ 小的数,就是 Black Box 里的数的按从小到大的顺序排序后的第 $i$ 个元素。

我们来演示一下一个有11个命令的命令串。(如下表所示)

| 序号 | 操作 | $i$ | 数据库 | 输出 |
| :--: | :--- | :------: | ------ | :----: |
|   1  | `ADD(3)`     |   $0$    |  $3$  | / |
|   2  | `GET` |   $1$    |  $3$  | $3$ |
|   3  |`ADD(1)`|$1$|$1,3$|/|
|   4  |`GET`|$2$|$1,3$|$3$|
|   5  |`ADD(-4)`|$2$|$-4,1,3$|/|
|   6  |`ADD(2)`|$2$|$-4,1,2,3$|/|
|   7  |`ADD(8)`|$2$|$-4,1,2,3,8$|/|
|   8  |`ADD(-1000)`|$2$|$-1000,-4,1,2,3,8$|/|
|   9  |`GET`|$3$|$-1000,-4,1,2,3,8$|$1$|
|  10  |`GET`|$4$|$-1000,-4,1,2,3,8$|$2$|
|  11  |`ADD(2)`|$4$|$-1000,-4,1,2,2,3,8$|/|

现在要求找出对于给定的命令串的最好的处理方法。`ADD` 命令共有 $m$ 个,`GET` 命令共有 $n$ 个。现在用两个整数数组来表示命令串:

1. $a_1,a_2,\cdots,a_m$:一串将要被放进 Black Box 的元素。例如上面的例子中 $a=[3,1,-4,2,8,-1000,2]$。

2. $u_1,u_2,\cdots,u_n$:表示第 $u_i$ 个元素被放进了 Black Box 里后就出现一个 `GET` 命令。例如上面的例子中 $u=[1,2,6,6]$ 。输入数据不用判错。

## 输入格式

第一行两个整数 $m$ 和 $n$,表示元素的个数和 `GET` 命令的个数。

第二行共 $m$ 个整数,从左至右第 $i$ 个整数为 $a_i$,用空格隔开。

第三行共 $n$ 个整数,从左至右第 $i$ 个整数为 $u_i$,用空格隔开。

## 输出格式

输出 Black Box 根据命令串所得出的输出串,一个数字一行。

## 样例 #1

### 样例输入 #1

```
7 4
3 1 -4 2 8 -1000 2
1 2 6 6
```

### 样例输出 #1

```
3
3
1
2
```

## 提示

#### 数据规模与约定

- 对于 $30\%$ 的数据,$1 \leq n,m \leq 10^{4}$。
- 对于 $50\%$ 的数据,$1 \leq n,m \leq 10^{5}$。
- 对于 $100\%$ 的数据,$1 \leq n,m \leq 2 \times 10^{5},|a_i| \leq 2 \times 10^{9}$,保证 $u$ 序列单调不降。

代码:

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;
const int N=2e5+10;

int t[N];
int n,m;

int lowbit(int x){
    return x&-x;
}

void add(int x,int k)
{
    for(int i=x; i<=n; i+=lowbit(i)) t[i]+=k;
}

LL ask(int x)
{
    LL res=0;
    for(int i=x; i; i-=lowbit(i)) res+=t[i];
    return res;
}

int main()
{

    cin>>n>>m;
    vector<int> a(n), b,c(m);
    for(int i=0; i<n; i++){
        cin>>a[i];
        b.push_back(a[i]);
    }
    for(int i=0; i<m; i++) cin>>c[i];
    sort(b.begin(), b.end());
    b.erase(unique(b.begin(),b.end()),b.end());
    for(int i=0; i<n; i++){
        a[i]=lower_bound(b.begin(),b.end(),a[i])-b.begin()+1;
    }

    // for(int i=0; i<n; i++){
    //     cout<<b[a[i]-1]<<' ';
    // }
    // cout<<'\n';

    int j=0, p=0;
    for(int i=0; i<n; i++){
        add(a[i],1);
        while(i+1==c[j]){
            p++;
            int l=1, r=n;
            while(l<r){
                int mid=l+r>>1;
                if(ask(mid)>=p) r=mid;
                else l=mid+1;
            }
            cout<<b[r-1]<<'\n';
            j++;
            if(j>=m) return 0;
        }
    }

    return 0;
}

Problem - B - Codeforces(离散化+树状数组 求a[i]后面大于a[i]的数的个数)

题目:

思路:

补一下nlogn的解法

代码:

#include <bits/stdc++.h>  
  
using namespace std;  

typedef long long LL;
typedef pair<int,int> PII;

const int N=2010;

int n;
int t[N], a[N];

int lowbit(int x)
{
    return x&-x;
}

void add(int x,int k)
{
    for(int i=x; i<=n; i+=lowbit(i)) t[i]+=k;
}

int ask(int x)
{
    int res=0;
    for(int i=x; i; i-=lowbit(i)) res+=t[i];
    return res;
}

void solve()
{
    memset(t,0,sizeof t);
    cin>>n;
    vector<int> b(n);
    for(int i=1; i<=n; i++){
        cin>>a[i];
        b[i-1]=a[i];
    }
    sort(b.begin(), b.end());
    b.erase(unique(b.begin(), b.end()), b.end());
    int m=b.size();
    for(int i=1; i<=n; i++){
        a[i]=lower_bound(b.begin(),b.end(),a[i])-b.begin()+1;
    }
    for(int i=1; i<=n; i++){
        add(a[i],1);
    }

    int ans=n;
    for(int i=1; i<=n; i++){
        int t=ask(n)-ask(a[i]);
        ans=min(ans,t+i-1);
        add(a[i],-1);
    }
    cout<<ans<<'\n';

}

int main() {  
    int T;
    cin>>T;
    // T=1;
    while(T--){
        solve();
    } 
    return 0;  
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值