合并两个有序数组

合并两个有序数组

示例 1:

输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。

示例 2:

输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。

示例 3:

输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。

逆向双指针代码:

class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        int p1 = m-1,p2 = n-1;
        int tail = m+n-1;
        int cur;

        while(p1>=0 || p2>=0){
            if(p1==-1){
                cur = nums2[p2--];
            }else if(p2==-1){
                cur = nums1[p1--];
            }else if(nums1[p1]>nums2[p2]){
                cur = nums1[p1--];
            }else if(nums1[p1]<nums2[p2]){
                cur = nums2[p2--];
            }else{
                cur = nums1[p1--];
            }
            nums1[tail--]=cur;
        }
    }
}

GPT的思路

国内使用地址点我跳转

我们可以使用双指针法从后向前遍历,避免将已经排序的数组打乱。这个方法的核心思路是从 nums1 的末尾开始填充较大的元素,因为末尾是用零填充的空闲区域,这样我们可以避免覆盖 nums1 的有效元素。

以下是实现的步骤:

  1. 定义两个指针,分别指向 nums1nums2 有效元素的末尾。
  2. 比较两个数组中的当前元素,将较大的元素放到 nums1 的末尾。
  3. 移动相应的指针,继续填充剩余的元素。
  4. 如果 nums2 中还有剩余元素没有处理完(即 nums1 中的元素已经全部处理完),就直接将 nums2 的元素放入 nums1

下面是 Java 代码的实现:

public class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        // 初始化三个指针,分别指向 nums1 和 nums2 的末尾,以及合并后数组的末尾
        int p1 = m - 1;
        int p2 = n - 1;
        int p = m + n - 1;
        
        // 从后往前遍历,比较 nums1 和 nums2 的元素
        while (p1 >= 0 && p2 >= 0) {
            if (nums1[p1] > nums2[p2]) {
                nums1[p] = nums1[p1];
                p1--;
            } else {
                nums1[p] = nums2[p2];
                p2--;
            }
            p--;
        }
        
        // 如果 nums2 还有剩余元素,直接填入 nums1
        while (p2 >= 0) {
            nums1[p] = nums2[p2];
            p--;
            p2--;
        }
    }
}

详细解释:

  1. 指针的初始化

    • p1 指向 nums1 中最后一个有效元素,即 m - 1
    • p2 指向 nums2 中最后一个元素,即 n - 1
    • p 指向 nums1 中最后一个位置,即 m + n - 1
  2. 比较元素并填充

    • p1p2 都没有越界的情况下,比较 nums1[p1]nums2[p2],将较大的元素放在 nums1[p] 位置。
    • 然后移动相应的指针,继续比较下一个元素。
  3. 处理剩余的元素

    • 如果 nums2 中还有元素未处理完,直接将它们放入 nums1 对应的位置。
    • 如果 nums1 的元素已经放完,但 nums2 还有剩余的元素,这种情况是可以通过后续的 while (p2 >= 0) 循环来处理。

示例解释:

  • 对于示例1:
nums1 = [1,2,3,0,0,0], m = 3
nums2 = [2,5,6], n = 3
  1. 初始状态:p1 = 2, p2 = 2, p = 5
  2. 比较 nums1[2] = 3nums2[2] = 6,6 大,放入 nums1[5],指针移动:p2 = 1, p = 4
  3. 比较 nums1[2] = 3nums2[1] = 5,5 大,放入 nums1[4],指针移动:p2 = 0, p = 3
  4. 比较 nums1[2] = 3nums2[0] = 2,3 大,放入 nums1[3],指针移动:p1 = 1, p = 2
  5. 比较 nums1[1] = 2nums2[0] = 2,相等,放入 nums1[2],指针移动:p2 = -1, p = 1
  6. 此时 p2 < 0,合并完成,最终结果为 [1, 2, 2, 3, 5, 6]

时间复杂度分析:

  • 由于每个元素只遍历一次,时间复杂度为 O(m + n)。
  • 空间复杂度为 O(1),因为我们只是在原地修改 nums1

这个方法能够高效地解决问题,并且符合进阶要求的 O(m + n) 复杂度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值