DeepLearning in Pytorch|我的第一个NN-共享单车预测

本文介绍了如何使用Pytorch实现一个简单的神经网络模型预测租赁单车数量,探讨了模型的训练过程、过拟合现象,并提出了解决方案。作者通过实例展示了如何优化输入数据和调整网络结构来改善模型性能。
摘要由CSDN通过智能技术生成

目录

概要

一、数据准备

导入数据

数据可视化

二、设计神经网络

版本一

版本二(正片)

三、测试

小结


概要

我的第一个深度学习神经网络模型---利用Pytorch设计人工神经网络对某地区租赁单车的使用情况进行预测

输入节点为1个,隐含层为10个,输出节点数为1的小型人工神经网络,用数据的下标预测单车数量。

PS:

1.该神经网络无法达到解决实际问题的要求,但它结构简单,包含了神经网络的基本元素,可以达到初步入门深度学习以及熟悉Pytorch使用的效果,同时在实践过程中引出了过拟合现象。

2.Pytorch 2.2.1 (CPU) Python 3.6.13|Anaconda 环境

3.《深度学习原理与Pytorch实践》学习笔记

一、数据准备

导入数据

#导入需要使用的库
import numpy as np
import pandas as pd #读取csv文件的库
import matplotlib.pyplot as plt #绘图
import torch
import torch.optim as optim

这里我们使用来自GitHub的开源数据用作构建神经网络

#读取数据到内存中,rides为一个dataframe对象
data_path = 'dir/hour.csv' #文件路径
rides = pd.read_csv(data_path)
rides.head()

 可以看到成功读入的数据如下:c180d12fed994374b19958b1235a8648.png

数据可视化

我们用数据序号(0,1,2,3,···)与数据cnt(count)构建神经网络(hhh实际解决问题时当然不会这样做)

#我们取出最后一列的前50条记录来进行预测
counts = rides['cnt'][:50]

#获得变量x,它是1,2,……,50
x = np.arange(len(counts))

# 将counts转成预测变量(标签):y
y = np.array(counts)

# 绘制一个图形,展示曲线长的样子
plt.figure(figsize = (10, 7)) #设定绘图窗口大小
plt.plot(x, y, 'o-') # 绘制原始数据
plt.xlabel('X') #更改坐标轴标注
plt.ylabel('Y') #更改坐标轴标注
plt.show()

 这里我们取出前五十条记录用于模型,绘制出序号与cnt关系,大致数据分布图如下:

6e8d79ce91d948f0ae6f3135c89ca57e.png

二、设计神经网络

我们构建一个单一输入,10个隐含层单元,1个输出单元的人工神经网络预测器

版本一

#取出数据库中的最后一列的前50条记录来进行预测
counts = rides['cnt'][:50]

#创建变量x,它是1,2,……,50
x = torch.tensor(np.arange(len(counts), dtype = float), requires_grad = True)

# 将counts转成预测变量(标签):y
y = torch.tensor(np.array(counts, dtype = float), requires_grad = True)

# 设置隐含层神经元的数量
sz = 10

# 初始化所有神经网络的权重(weights)和阈值(biases)
weights = torch.randn((1, sz), dtype = torch.double, requires_grad = True) #1*10的输入到隐含层的权重矩阵
biases = torch.randn(sz, dtype = torch.double, requires_grad = True) #尺度为10的隐含层节点偏置向量
weights2 = torch.randn((sz, 1), dtype = torch.double, requires_grad = True) #10*1的隐含到输出层权重矩阵

learning_rate = 0.001 #设置学习率
losses = []

# 将 x 转换为(50,1)的维度,以便与维度为(1,10)的weights矩阵相乘
x = x.view(50, -1)
# 将 y 转换为(50,1)的维度
y = y.view(50, -1)

for i in range(100000):
    # 从输入层到隐含层的计算
    hidden = x * weights + biases
    # 将sigmoid函数作用在隐含层的每一个神经元上
    hidden = torch.sigmoid(hidden)
    #print(hidden.size())
    # 隐含层输出到输出层,计算得到最终预测
    predictions = hidden.mm(weights2)#
    #print(predictions.size())
    # 通过与标签数据y比较,计算均方误差
    loss = torch.mean((predictions - y) ** 2) 
    #print(loss.size())
    losses.append(loss.data.numpy())
    
    # 每隔10000个周期打印一下损失函数数值
    if i % 10000 == 0:
        print('loss:', loss)
        
    #对损失函数进行梯度反传
    loss.backward()
    
    #利用上一步计算中得到的weights,biases等梯度信息更新weights或biases中的data数值
    weights.data.add_(- learning_rate * weights.grad.data)  
    biases.data.add_(- learning_rate * biases.grad.data)
    weights2.data.add_(- learning_rate * weights2.grad.data)
    
    # 清空所有变量的梯度值。
    # 因为pytorch中backward一次梯度信息会自动累加到各个变量上,因此需要清空,否则下一次迭代会累加,造成很大的偏差
    weights.grad.data.zero_()
    biases.grad.data.zero_()
    weights2.grad.data.zero_()

运行过程:7f9cf5dc759d4399b9bfa03035dc4496.png 

程序运行大约14min

# 打印误差曲线
plt.plot(losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()

打印出误差曲线如下 

2519015d83b14c7dbf929bb8e857d6c5.png

由该曲线可以看出,随着时间的推移,神经网络预测的误差的确在一步步减小。而且,大约到20000步后,误差基本就不会出现明显的下降了

x_data = x.data.numpy() # 获得x包裹的数据
plt.figure(figsize = (10, 7)) #设定绘图窗口大小
xplot, = plt.plot(x_data, y.data.numpy(), 'o') # 绘制原始数据

yplot, = plt.plot(x_data, predictions.data.numpy())  #绘制拟合数据
plt.xlabel('X') #更改坐标轴标注
plt.ylabel('Y') #更改坐标轴标注
plt.legend([xplot, yplot],['Data', 'Prediction under 1000000 epochs']) #绘制图例
plt.show()

我们可以把训练好的网络对这50个数据点的预测曲线绘制出来,并与标准答案y进行对比: 

378621bc550142e0859e83852b78f0c7.png

预测曲线在第一个波峰比较好地拟合了数据,但在这之后却偏差较大

版本二(正片)

上面的程序之所以跑得慢,是因为x的取值范围1~50。 而由于所有权重和biases的取值范围被设定为-1,1的正态分布随机数,这样就导致 我们输入给隐含层节点的数值范围为-50~50, 要想将sigmoid函数的多个峰值调节到我们期望的位置需要耗费很多的计算时间

我们的解决方案就是将输入变量的范围归一化

#取出最后一列的前50条记录来进行预测
counts = rides['cnt'][:50]

#创建归一化的变量x,它的取值是0.02,0.04,...,1
x = torch.tensor(np.arange(len(counts), dtype = float) / len(counts), requires_grad = True)

# 创建归一化的预测变量y,它的取值范围是0~1
y = torch.tensor(np.array(counts, dtype = float), requires_grad = True)

#隐藏神经元个数
sz = 10

# 初始化所有神经网络的权重(weights)和阈值(biases)
weights = torch.randn((1, sz), dtype = torch.double, requires_grad = True) #1*10的输入到隐含层的权重矩阵
biases = torch.randn(sz, dtype = torch.double, requires_grad = True) #尺度为10的隐含层节点偏置向量
weights2 = torch.randn((sz, 1), dtype = torch.double, requires_grad = True) #10*1的隐含到输出层权重矩阵

learning_rate = 0.001 #设置学习率
losses = []

# 将 x 转换为(50,1)的维度,以便与维度为(1,10)的weights矩阵相乘
x = x.view(50, -1)
# 将 y 转换为(50,1)的维度
y = y.view(50, -1)

for i in range(100000):
    # 从输入层到隐含层的计算
    hidden = x * weights + biases
    # 将sigmoid函数作用在隐含层的每一个神经元上
    hidden = torch.sigmoid(hidden)
    # 隐含层输出到输出层,计算得到最终预测
    predictions = hidden.mm(weights2)# + biases2.expand_as(y)
    # 通过与标签数据y比较,计算均方误差
    loss = torch.mean((predictions - y) ** 2) 
    losses.append(loss.data.numpy())
    
    # 每隔10000个周期打印一下损失函数数值
    if i % 10000 == 0:
        print('loss:', loss)
        
    #对损失函数进行梯度反传
    loss.backward()
    
    #利用上一步计算中得到的weights,biases等梯度信息更新weights或biases中的data数值
    weights.data.add_(- learning_rate * weights.grad.data)  
    biases.data.add_(- learning_rate * biases.grad.data)
    weights2.data.add_(- learning_rate * weights2.grad.data)
    
    # 清空所有变量的梯度值。
    # 因为pytorch中backward一次梯度信息会自动累加到各个变量上,因此需要清空,否则下一次迭代会累加,造成很大的偏差
    weights.grad.data.zero_()
    biases.grad.data.zero_()
    weights2.grad.data.zero_()

运行程序,耗时约9min 

plt.semilogy(losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.show()

  绘出损失曲线:d5d5eb5946d344128eaf55a1b5d5ee8a.png

x_data = x.data.numpy() # 获得x包裹的数据
plt.figure(figsize = (10, 7)) #设定绘图窗口大小
xplot, = plt.plot(x_data, y.data.numpy(), 'o') # 绘制原始数据
yplot, = plt.plot(x_data, predictions.data.numpy())  #绘制拟合数据
plt.xlabel('X') #更改坐标轴标注
plt.ylabel('Y') #更改坐标轴标注
plt.legend([xplot, yplot],['Data', 'Prediction']) #绘制图例
plt.show()

得到曲线如下: 

7ab00ced5e4f44338319cfd32d3fc143.png

显然拟合效果更好了!

三、测试

我们就需要用训练好的模型来做预测,将后面50条数据(50~100)作为测试集。此时x取值是51, 52, …, 100,同样也要除以50: 

counts_predict = rides['cnt'][50:100] #读取待预测的接下来的50个数据点

#首先对接下来的50个数据点进行选取,注意x应该取51,52,……,100,然后再归一化
x = torch.tensor((np.arange(50, 100, dtype = float) / len(counts))
                 , requires_grad = True)
#读取下50个点的y数值,不需要做归一化
y = torch.tensor(np.array(counts_predict, dtype = float), requires_grad = True)

x = x.view(50, -1)
y = y.view(50, -1)

# 从输入层到隐含层的计算
hidden = x * weights + biases

# 将sigmoid函数作用在隐含层的每一个神经元上
hidden = torch.sigmoid(hidden)

# 隐含层输出到输出层,计算得到最终预测
predictions = hidden.mm(weights2)

# 计算预测数据上的损失函数
loss = torch.mean((predictions - y) ** 2) 
print(loss)


x_data = x.data.numpy() # 获得x包裹的数据
plt.figure(figsize = (10, 7)) #设定绘图窗口大小
xplot, = plt.plot(x_data, y.data.numpy(), 'o') # 绘制原始数据
yplot, = plt.plot(x_data, predictions.data.numpy())  #绘制拟合数据
plt.xlabel('X') #更改坐标轴标注
plt.ylabel('Y') #更改坐标轴标注
plt.legend([xplot, yplot],['Data', 'Prediction']) #绘制图例
plt.show()

得到结果如下:

直线是我们的模型给出的预测曲线,圆点是实际数据所对应的曲线。

62f5c9ff256e4f41bafb5906d352a872.png模型预测与实际数据竟然完全对不上!为什么我们的神经网络可以非常好地拟合已知的50个数据点,却在测试集上出错了呢?因为y(单车数量)与x(数据序号)根本没有关系!这就是在机器学习中最常见的困难---过拟合

过拟合(Overfitting)是指机器学习模型在训练数据上表现很好,但在测试数据上表现较差的情况。过拟合通常发生在模型过度复杂或者训练数据量太少的情况下。

对于我们的单车预测模型,问题显然在于我们要求模型学习 单车数量y 与 数据序号x 之间的关系,模型通过学习我们给出的前五十组数据(训练集)学会了它所认为的样本特征,但当我们引入后面50组样本(测试集)时,我们发现模型学到的特征是没有意义的,它只能反映训练集中的某些特点。

如果要解决这个问题,我们就应该让模型学习关于样本的更多特征,如:星期几、是否节假日、温度、湿度等(显然这些才是真正会影响x的因素)。当然从理论上讲,这样得到的神经网络更复杂,但显然他的预测更能达到我们想要的效果。

小结

对于我们的单车预测模型,问题显然在于我们要求模型学习 单车数量y 与 数据序号x 之间的关系,模型通过学习我们给出的前五十组数据(训练集)学会了它所认为的样本特征,但当我们引入后面50组样本(测试集)时,我们发现模型学到的特征是没有意义的,它只能反映训练集中的某些特点。

如果要解决这个问题,我们就应该让模型学习关于样本的更多特征,如:星期几、是否节假日、温度、湿度等(显然这些才是真正会影响x的因素)。当然从理论上讲,这样得到的神经网络更复杂,但显然他的预测更能达到我们想要的效果。

主要参考资料:《深度学习原理与Pytorch实践》

参考代码:bike1.py · che.melsm/DeepLearning Project - Gitee.com

  • 50
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值