✨作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目
一、前言
在餐饮行业中,顾客满意度是衡量餐馆服务质量的关键指标,它直接影响顾客的重复消费意愿和口碑传播。随着互联网的普及和在线点评平台的发展,顾客越来越倾向于在就餐后在线分享自己的体验。这些在线评论蕴含了丰富的情感和观点,成为分析顾客满意度的重要数据源。根据某在线点评平台的统计数据,每年有数以百万计的餐馆评论被发布,涵盖了各种菜系、价格水平和地域的餐馆。如何有效收集和分析这些数据,对提升餐馆服务质量和顾客满意度具有重要意义。
本课题旨在开发一个餐馆满意度分析系统,通过该系统,餐馆管理者和研究人员能够对顾客的在线评论进行深入分析,洞察顾客需求和偏好,评估服务质量。系统将提供餐馆数据管理、评论数据管理、词云图生成、评论情感分析、数据可视化分析和满意度分析等核心功能。本课题的研究目的在于利用文本分析和数据挖掘技术,提高餐馆满意度分析的效率和准确性,为餐馆服务改进和顾客体验优化提供决策支持。
从理论角度来看,本课题的研究有助于推动服务营销、消费者行为和文本分析等领域的理论发展。通过对顾客评论数据的深入分析,可以为理解顾客满意度的形成机制和影响因素提供新的视角。实际而言,本课题的研究成果将为餐馆管理者、市场营销人员和政策制定者提供实际价值。对于餐馆管理者,系统可以帮助他们了解顾客的真实反馈,优化服务流程和提升菜品质量。对于市场营销人员,系统可以提供市场趋势分析,帮助他们制定更有效的营销策略。对于政策制定者,系统可以辅助他们评估餐饮行业的整体服务质量,制定行业标准和监管政策。
二、开发环境
- 开发语言:Python
- 数据库:MySQL
- 后端:Django、Scrapy
- 前端:Vue、Echarts
三、系统界面展示
- 餐馆满意度分析系统界面展示:
首页:
餐馆数据管理:
评论数据管理:
词云图:
情感分析:
可视化分析1:
可视化分析2:
可视化分析3:
满意度分析:
四、部分代码设计
- 项目实战-代码参考:
import scrapy
class RestaurantReviewSpider(scrapy.Spider):
name = 'restaurant_reviews'
allowed_domains = ['reviewsite.com'] # 替换为目标餐馆评论网站的域名
start_urls = ['http://reviewsite.com/restaurant-reviews']
def parse(self, response):
# 解析评论数据
for review in response.css('div.review'):
yield {
'restaurant_name': review.css('span.restaurant-name::text').get(),
'comment': review.css('p.comment::text').get(),
'rating': review.css('span.rating::text').get(),
# 其他相关字段...
}
from sklearn.cluster import KMeans
from django_app.models import RestaurantReview
def perform_cluster_analysis():
# 加载情感极性数据
data = RestaurantReview.objects.all().values_list('sentiment_polarity', flat=True)
kmeans = KMeans(n_clusters=3) # 假设我们想要分为3个聚类
kmeans.fit(data.reshape(-1, 1))
# 将聚类结果保存到数据库
for i, review in enumerate(RestaurantReview.objects.all()):
review.cluster = kmeans.labels_[i]
review.save()
五、论文参考
- 计算机毕业设计选题推荐-餐馆满意度分析系统-论文参考:
六、系统视频
- 餐馆满意度分析系统-项目视频:
计算机毕业设计选题推荐-餐馆满意度分析-K-means算法
结语
计算机毕业设计选题推荐-餐馆满意度分析-Python爬虫-K-means算法-nlp情感分析
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:⬇⬇⬇