1. 题⽬链接:98.验证⼆叉搜索树
2. 题⽬描述:
3. 解法(利⽤中序遍历):
后序遍历按照左⼦树、根节点、右⼦树的顺序遍历⼆叉树的所有节点,通常⽤于⼆叉搜索树相关题 ⽬。
算法思路:
如果⼀棵树是⼆叉搜索树,那么它的中序遍历的结果⼀定是⼀个严格递增的序列。
因此,我们可以初始化⼀个⽆穷⼩的全区变量,⽤来记录中序遍历过程中的前驱结点。那么就可以在 中序遍历的过程中,先判断是否和前驱结点构成递增序列,然后修改前驱结点为当前结点,传⼊下⼀ 层的递归中。
算法流程:
1. 初始化⼀个全局的变量prev,⽤来记录中序遍历过程中的前驱结点的val;
2. 中序遍历的递归函数中:
a. 设置递归出⼝:root==nullptr的时候,返回true;
b. 先递归判断左⼦树是否是⼆叉搜索树,⽤retleft标记;
c. 然后判断当前结点是否满⾜⼆叉搜索树的性质,⽤retcur标记:
▪ 如果当前结点的val⼤于prev,说明满⾜条件,retcur改为true;
▪ 如果当前结点的val⼩于等于prev,说明不满⾜条件,retcur改为false;
d. 最后递归判断右⼦树是否是⼆叉搜索树,⽤retright标记;
3. 只有当retleft、retcur和retright都是true的时候,才返回true。
C++算法代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution
{
public:
//用于对比参数
long key=LONG_MIN;
bool isValidBST(TreeNode* root)
{
//空树也是搜索树
if(root==nullptr)
{
return true;
}
//中序遍历
//左
bool left=isValidBST(root->left);
//剪枝
if(left==false)
{
return false;
}
//中
bool cur=false;
if(root->val>key)
{
cur=true;
}
//剪枝
if(cur==false)
{
return false;
}
key=root->val;
//右
bool right=isValidBST(root->right);
return left&&right&&cur;
}
};
Java算法代码:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution
{
long prev = Long.MIN_VALUE;
public boolean isValidBST(TreeNode root)
{
if (root == null) return true;
boolean left = isValidBST(root.left);
// 剪枝
if (left == false) return false;
boolean cur = false;
if (root.val > prev) cur = true;
if (cur == false) return false;
prev = root.val;
boolean right = isValidBST(root.right);
return left && cur && right;
}