(算法)三步问题————<动态规划>

1. 题⽬链接:⾯试题08.01.三步问题

2. 题⽬描述

3. 解法(动态规划)

算法思路

1. 状态表⽰

这道题可以根据「经验+题⽬要求」直接定义出状态表⽰: 

dp[i] 表⽰:到达i 位置时,⼀共有多少种⽅法。

2. 状态转移⽅程 以i位置状态的最近的⼀步,来分情况讨论: 如果 dp[i] 表⽰⼩孩上第i 阶楼梯的所有⽅式,那么它应该等于所有上⼀步的⽅式之和:

        i. 上⼀步上⼀级台阶, dp[i] += dp[i - 1] ;

        ii. 上⼀步上两级台阶, dp[i] += dp[i - 2] ;

        iii. 上⼀步上三级台阶, dp[i] += dp[i - 3] ;

综上所述, dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3] 。

需要注意的是,这道题⽬说,由于结果可能很⼤,需要对结果取模。

在计算的时候,三个值全部加起来再取模,即(dp[i - 1] + dp[i - 2] + dp[i - 3]) % MOD 是不可取的,同学们可以试验⼀下, n 取题⽬范围内最⼤值时,⽹站会报错signed integer overflow 。

对于这类需要取模的问题,我们每计算⼀次(两个数相加/乘等),都需要取⼀次模。否则,万⼀ 发⽣了溢出,我们的答案就错了。

3. 初始化 从我们的递推公式可以看出, dp[i] 在i = 0, i = 1 以及i = 2 的时候是没有办法进⾏ 推导的,因为dp[-3] dp[-2] 或dp[-1] 不是⼀个有效的数据。

因此我们需要在填表之前,将1, 2, 3 位置的值初始化。

根据题意, dp[1] = 1, dp[2] = 2, dp[3] = 4 。

4. 填表顺序 毫⽆疑问是「从左往右」。

5. 返回值 应该返回dp[n] 的值。

C++算法代码: 

class Solution 
{
public:
    int waysToStep(int n) 
    {
        if(n==1)
        {
            return 1;
        }
        //创造dp表
        vector<int>dp(n+1);
        //初始化
        dp[0]=1,dp[1]=1,dp[2]=2;
        //填表
        for(int i=3;i<=n;i++)
        {
            dp[i]=((dp[i-1]+dp[i-2])%1000000007+dp[i-3])%1000000007;
        }
        //返回值
        return dp[n];
    }
};

Java算法代码:

class Solution
{
	public int waysToStep(int n)
	{
		// 1. 创建 dp 表 
		// 2. 初始化 
		// 3. 填表 
		// 4. 返回值 
		1
			2
			3
			4
			5
			6
			7
			8 int MOD = (int)1e9 + 7;
		// 处理⼀下边界情况 
		if (n == 1 || n == 2) return n;
		if (n == 3) return 4;
		int[] dp = new int[n + 1];
		dp[1] = 1; dp[2] = 2; dp[3] = 4;
		for (int i = 4; i <= n; i++)
			dp[i] = ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;
		return dp[n];
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

课堂随笔

感谢支持~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值