洛谷P3842线段

线段

本题重点:状态转移方程f[i][0]=min(f[i-1][0]+abs(s[i-1].l-s[i].r)+s[i].r-s[i].l,f[i-1][1]+abs(s[i-1].r-s[i].r)+s[i].r-s[i].l)+1;

第i行的左端点可以由上一行的左端点或者右端点得到,因为f[i][0]是要走完这条线段并且到达这一行的左端点,所以计算到下一行的右端点即abs(s[i-1].l-s[i].r)在加上s[i].r-s[i].l就行了,f[i][1]同理

#include<iostream>
using namespace std;
const int N=2e4+5;
int f[N][2];
//f[i][0]表示从1,1开始到第i行的左端点最小值,f[i][1]表示从1,1开始到第i行的右端点最小值
struct s{
	int l,r;
}s[N];
//每一行的左端点和右端点 
int main(){
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)cin>>s[i].l>>s[i].r;
	//输入,从1开始 
	f[1][0]=s[1].r-1+s[1].r-s[1].l;
	f[1][1]=s[1].r-1;
	//初始化 
	for(int i=2;i<=n;i++)
	{
		f[i][0]=min(f[i-1][0]+abs(s[i-1].l-s[i].r)+s[i].r-s[i].l,f[i-1][1]+abs(s[i-1].r-s[i].r)+s[i].r-s[i].l)+1;
		//别忘记+1 
		f[i][1]=min(f[i-1][0]+abs(s[i-1].l-s[i].l)+s[i].r-s[i].l,f[i-1][1]+abs(s[i-1].r-s[i].l)+s[i].r-s[i].l)+1;
	}
	cout<<min(f[n][0]+n-s[n].l,f[n][1]+n-s[n].r);
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值