本题重点:状态转移方程f[i][0]=min(f[i-1][0]+abs(s[i-1].l-s[i].r)+s[i].r-s[i].l,f[i-1][1]+abs(s[i-1].r-s[i].r)+s[i].r-s[i].l)+1;
第i行的左端点可以由上一行的左端点或者右端点得到,因为f[i][0]是要走完这条线段并且到达这一行的左端点,所以计算到下一行的右端点即abs(s[i-1].l-s[i].r)在加上s[i].r-s[i].l就行了,f[i][1]同理
#include<iostream>
using namespace std;
const int N=2e4+5;
int f[N][2];
//f[i][0]表示从1,1开始到第i行的左端点最小值,f[i][1]表示从1,1开始到第i行的右端点最小值
struct s{
int l,r;
}s[N];
//每一行的左端点和右端点
int main(){
int n;
cin>>n;
for(int i=1;i<=n;i++)cin>>s[i].l>>s[i].r;
//输入,从1开始
f[1][0]=s[1].r-1+s[1].r-s[1].l;
f[1][1]=s[1].r-1;
//初始化
for(int i=2;i<=n;i++)
{
f[i][0]=min(f[i-1][0]+abs(s[i-1].l-s[i].r)+s[i].r-s[i].l,f[i-1][1]+abs(s[i-1].r-s[i].r)+s[i].r-s[i].l)+1;
//别忘记+1
f[i][1]=min(f[i-1][0]+abs(s[i-1].l-s[i].l)+s[i].r-s[i].l,f[i-1][1]+abs(s[i-1].r-s[i].l)+s[i].r-s[i].l)+1;
}
cout<<min(f[n][0]+n-s[n].l,f[n][1]+n-s[n].r);
}