蓝桥算法题
亲爱的禾.
这个作者很懒,什么都没留下…
展开
-
蓝桥杯算法训练 加法分解
输出若干行,每行表示一种分解方案。对于一种方案,先输出n,再输出一个“=”。然后输出分解的各数,不同的数之间用一个“+”连接。输入共1行,包含2个正整数n和m,之间用一个空格隔开。对于50%的数据有M=1,另有50%的数据有M=2。对100%的数据,n≤15。1. 根据输入的要求决定交换加数的位置是否视为不同的分解方案。给一个正整数n,输出它所有的正整数加法的分解方法。3. 按字典序输出所有分解方案,格式见样例。2. 不分解也视为一种分解方案。1表示交换加数的位置是否视为。2表示交换加数的位置是否视为。原创 2024-05-27 18:24:16 · 200 阅读 · 0 评论 -
蓝桥杯算法训练 球员安排
如果当前球员想当当前职位,就让他当,然后进入下一个球员并在对应职位人数上加1,然后回溯在对应职位人数减1。由于球队非常业余,所以不考虑后卫、中场、前锋各自内部的排列,即后卫{A,B,C,D}和后卫{D,C,B,A}是一样的。11行,每行长度为4的零一串,依次表示球员是否愿意做门将、后卫、中场、前锋。0表示不愿意,1表示愿意。一只业余足球队在安排11名球员的位置,球队踢4-3-3的战术(即1门将,4后卫,3中场,3前锋)。每名球员有自己愿意踢的位置,比如MS只愿意踢后卫,而CR愿意踢中场和前锋。原创 2024-05-15 17:15:14 · 195 阅读 · 0 评论 -
蓝桥杯算法训练 N皇后问题
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。你的任务是,对于给定的N,求出有多少种合法的放置方法。深搜+回溯,关于对角线,只需要建立两个数组d1,d2,d1存储x+y,d2存储y-x+n,保证所有皇后的坐标x+y不相等,y-x+n不相等即可确保对角线上不存在皇后。为一个正整数,表示对应输入行的皇后的不同放置数量。输入中有一个正整数N≤10,表示棋盘和皇后的数量。原创 2024-05-21 10:35:49 · 359 阅读 · 0 评论 -
算法训练 抗击虫群
在被虫群骚扰了数年之后,人类终于研制出了对抗虫群的特效药。但是,这些药物要发挥效用,必须填满位于A区的两个容器S、T,这两个容器的容量分别为n,m而每次填充药物的量p是固定的,现在人们想知道,将P设置为多少才能在最快时间内填满两个容器(即每次的添加量为P,一次只能填充一个容器,且不可超出容器容积,可以认为在添加完S容器后,在添加T容器)这道题没有什么难度,就是不断求n和m的最大公约数,但是要注意n和m可能为0,要单独判断!ps:由于入侵有多次,容器的体积会因外界元素的干扰而产生变化,你需要输出每次的P;原创 2024-05-14 11:01:42 · 210 阅读 · 1 评论 -
蓝桥杯算法训练 区间最大和
本道题使用前缀和思想会超时,这里用到的是动态规划。这里假设f为前缀和,当f小于0时,将f重置,因为小于0的数加上后面的数的和一定小于后面的数的和,所以状态转移方程为f=max(f,0)+num[i],如果f大于ans就更新ans。给定一段长度为N的整数序列A,请从中选出一段连续的子序列(可以为0)使得这段的总和最大。第二行N个整数Ai表示序列的第i个元素。第一行一个整数N表示序列的长度。一个整数表示选出的最大的和。原创 2024-05-11 11:30:21 · 186 阅读 · 1 评论 -
蓝桥杯算法训练 试题3971
有一些正整数,如果这个正整数分解质因数之后,只包含2或3或5,那么该数即为“丑数”,比如100就是“丑数”,100分解质因数之后只包含2和5;14就不是“丑数”,因为14分解质因数之后,包含了7.输入正整数n,请写程序判断n是否是“丑数”,是“丑数”则输出“yes”,否则输出“no”。只需要用n不断地和2,3,5取模判断,当满足任取模结果不为0时,除以对应的数就可以了。注意:1可能要单独考虑一下哦。一个字符串yes 或no。n不超过C语言整型范围。原创 2024-05-11 10:15:44 · 146 阅读 · 0 评论 -
蓝桥杯算法训练 A的B的C次方次方
首先需要理解题目,是要先求出B的C次方,假设结果为D,再求出A的D次方。这里要用到快速幂,快速幂就是指数不断除2,底数不断平方,假设初始结果为1,当指数为奇数时,结果乘以此时的底数。由于(a*b)%c=(a%c*b%c)%c,所以我们只需要每次计算底数取模和每次计算结果取模就行了。这里还要用到一个费马小定理:若存在整数 a , p 且gcd(a,p)=1,即二者互为质数,则有a^(p-1)≡ 1(mod p)。这里的≡是恒等于的意思,我实在理解不来,只知道在求B的C次方时取模为MOD-1就可以了。原创 2024-05-11 09:59:39 · 266 阅读 · 0 评论 -
蓝桥杯练习系统算法训练 贫穷的城市
倍增法原创 2024-05-09 09:33:50 · 920 阅读 · 1 评论