gcd和lcm

唯一分解定理

#include<bits/stdc++.h>
using namespace std;
using ll=long long;
const int N=2e9+9;
ll gcd(ll a,ll b)
{
  return b==0?a:gcd(b,a%b);//辗转相除法
}
ll lcm(ll a,ll b)//a*b=gcd(a,b)*lcm(a,b)
{
 return (a/gcd(a,b)*b);//防止超出范围
}
int main()
{
 ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
   int T;cin>>T;
   while(T--)
   {
     ll a,b;cin>>a>>b;
     cout<<gcd(a,b)<<' '<<lcm(a,b);
     cout<<'\n';
   }
   return 0;
}

tips:c++提供求gcd(最大公因数)的库函数:__gcd(a,b)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值