- 博客(7)
- 收藏
- 关注
原创 AI基础知识(六)——模型的评估和测试
盲测 (Blind Test):\\ 同时展示两个匿名模型(模型 A, 模型 B)对同一个问题的回答\\ 用户投票 (User Voting):\\ 让用户进行投票,选择“A 更好”、“B 更好”、“平局”或“都差”\\。AI 伦理与安全评估 专门组织一个“红队”,其任务是像黑客一样,想尽一切办法来“攻击”模型,诱导其产生有害的、有偏见的、不安全的回答。设计一个多维度的评分标准(如“有用性”、“诚实度”、“安全性”、“流畅度”),让经过培训的标注员为模型的每一个回答,在每个维度上打分(如 1-5 分)。
2025-09-18 12:25:56
627
原创 AI基础知识(五)——一些特殊名词的解释
树的分叉过程,就是寻找最优分裂点的过程。在每个节点,模型都必须回答一个核心问题:“在当前所有可用特征中,选择哪个特征、并设定一个什么样的规则,才能让分裂后的两个子集变得‘最纯净’?
2025-09-18 12:25:24
449
原创 AI基础知识(四)——分类上的交叉点
这三个核心组件是所有基于神经网络的模型(无论是在【技术分类】中的 CNN/RNN/Transformer,还是在【专业方向分类】中的所有大模型)都必须拥有的。它们的具体选择(如激活函数用 ReLU 还是 SwiGLU,优化器用 Adam 还是 SGD)是模型“微调”和“魔改”的重要部分,也是造成模型间性能差异的原因之一。科学发现(AlphaFold2):其核心组件Evoformer是一个深度定制的 Transformer。具身智能(RT-2):其核心是视觉-语言-动作 Transformer。
2025-09-18 12:24:40
220
原创 AI基础知识(三)——关于专业/应用方向上的分类
核心能力:理解并生成流畅、连贯、合乎逻辑的人类语言。它们是所有语言类 AI 的“通用底座”,目标是成为一个知识渊博、善于沟通的“通才”。均采用解码器-唯一(Decoder-only)的Transformer架构。这种架构的本质是一个自回归 (Autoregressive) 的预测模型。简单来说,它的工作方式就是“文字接龙”:根据已经生成的文本,来预测下一个最可能的词元 (Token)。这种逐词生成的机制,天然就非常适合构建连贯的、有上下文逻辑的自然语言。它就像一个技艺高超的作家,在写下每一个词之前,都会回顾
2025-09-18 12:20:42
1742
原创 AI基础知识(二)——技术分类上
符号AI与连接主义AI是人工智能的两大范式。符号AI基于知识表示与逻辑推理,通过专家系统等实现智能,但面临知识获取困难的问题。连接主义AI则通过机器学习从数据中自动学习,包括经典机器学习(如线性模型、SVM、集成学习)和深度学习(如CNN、Transformer)。深度学习在图像、文本等领域表现优异,尤其是Transformer已成为主流架构。生成模型(如GAN、扩散模型)能够生成新数据,扩散模型在图像生成中占据主导,而自回归模型(如GPT)在文本生成中表现突出。两种范式各有优势,共同推动AI发展。
2025-09-10 10:53:41
590
原创 C语言高级编程数据结构与算法(第一章:绪论)
这是b站数据结构的本人自做的笔记,将其发出来督促学习,并用于与广大网友交流辅助学习因为本人是第一次尝试C语言数据结构,如有知识问题,望各位及时指出,本人虚心求教,谢谢
2023-12-09 01:08:25
1945
2
C语言高级编程基础数据结构(第一部分:绪论)
2023-12-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅