时间、空间复杂度汇总
🎄时间、空间复杂度
🍟空间复杂度基本概念
- 空间复杂度为算法流程实现过程中,额外开辟的辅助空间大小,其判定、表示方式和时间复杂度相同。
public static void swap(int a, int b){
int t = a;
a = b;
b = t;
}
// 额外开辟了一个t的辅助空间,因此为O(1)
public static void swapArray(int[] arr1, int[] arr2){
// arr1.length == arr2.length
int[] arr3 = new int[arr1.length];
for(int i = 0, i < arr1.length; i++){
arr3[i] = arr2[i];
arr2[i] = arr1[i];
arr1[i] = arr3[i];
}
}
// 额外开辟了一个n大小的辅助空间,因此空间复杂度为O(n)
🌭时间复杂度基本概念
-
常数操作:一个操作和样本的数据量没有关系,每次都是固定时间完成操作,叫做常数操作。
-
时间复杂度为一个算法流程中,常数操作数量T(n)的一个指标,这个指标反映了当前算法在数据量增加时执行效率减缓的速度,常用O(读作big O)表示。具体来说,需要算出算法流程中发生了多少常数操作,进而总结成常数操作数量的表达式。
在表达式中,只要去除系数的最高项(n相对于n2,在数据量激增的背景下,可忽略不计),例如:
T(n) = 2n3+7n2-9 -> O(n3)
for(int i = 0; i < n; i++){ sum += i; } sum *=2 // T(n)= n + 1 -> O(n) for(int i = 0; i < n; i++){ for(int j = 0; j <= i; j++){ sum += j; } } sum ^= 3 // T(n)= n(n-1)/2 + 1 -> O(n^2)
-
评价算法流程的好坏,优先观察时间复杂度的指标,进而分析不同数据样本下的实际运行时间,也就是“常数项”时间。
-
对于更复杂的递归时间复杂度运算,可提前浏览递归中的Master公式内容。
-
常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(logn)<Ο(n)<Ο(nlogn)<Ο(nk) < Ο(2n),随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低
🍿基本的排序算法的时间复杂度
✨冒泡排序/起泡排序(Bubble Sort)
- 实现思路
- 从第一位起,分别依次比较下标为(1,2)、(2,3)、(3,4)…的值,若前者大于后者,则交换两个数
- 从头到尾执行完一轮后,数组中最大数被移动到数组尾部,继续进行第二轮、第三轮比较,分别将第二大、第三大的数移动到尾部
- 总共进行n-1轮,每轮选择最大值的过程就像是水中气泡冒出的过程,逐渐浮出到水面
- 图示:
- 代码实现
public static void bubbleSort(int[] arr){
if(arr == null || arr.length < 2){
return;
}
for(int i = arr.length - 1; i > 0; i--){
for(int j = 0; j < i; j++){
if(arr[j] > arr[j+1]){
swap(arr, j, j+1);
}
}
}
}
// 交换两数的值
public static void swap(int[] arr, int i, int j){
arr[i] = arr[i] ^ arr[j];
arr[j] = arr[i] ^ arr[j];
arr[i] = arr[i] ^ arr[j];
}
-
时间复杂度
O(n2)
✨插入排序(Insertion Sort)
-
实现思路
-
每次排序前0~n位置的数,第一次使0-0位置有序,第二次为0-1,依次为0-2,0-3,0-n…
-
每次从n位置往前看,当n位置比前方数(假设为k位置的数)小,交换两位数,再比较n位置和k-1位置,重复操作,当k==0 or n位置数大于k位置数 时结束,增大范围(n+1)继续比较
取其中一次排序做解析:
假设0-4范围已经排序,当前排序0-5范围
arr = [2,5,8,9,10,4,23,3]
(1)比较4和10,4<10,交换位置
arr = [2,5,8,9,4,10,23,3]
(2)比较4和9,4<9,交换位置
arr = [2,5,8,4,9,10,23,3]
(3)比较4和8,4<8,交换位置
arr = [2,5,4,8,9,10,23,3]
(4)比较4和5,4<5,交换位置
arr = [2,4,5,8,9,10,23,3]
(5)比较4和2,4>2,0-5范围排序完成,
-