数据结构与算法 时间、空间复杂度汇总

🎄时间、空间复杂度

🍟空间复杂度基本概念

  • 空间复杂度为算法流程实现过程中,额外开辟的辅助空间大小,其判定、表示方式和时间复杂度相同。
public static void swap(int a, int b){
   
	int t = a;
	a = b;
 	b = t;
}
// 额外开辟了一个t的辅助空间,因此为O(1)

public static void swapArray(int[] arr1, int[] arr2){
   // arr1.length == arr2.length
 	int[] arr3 = new int[arr1.length];
  	for(int i = 0, i < arr1.length; i++){
   
     	arr3[i] = arr2[i];
 		arr2[i] = arr1[i];
     	arr1[i] = arr3[i];
 	}
}
// 额外开辟了一个n大小的辅助空间,因此空间复杂度为O(n)

🌭时间复杂度基本概念

  • 常数操作:一个操作和样本的数据量没有关系,每次都是固定时间完成操作,叫做常数操作。

  • 时间复杂度为一个算法流程中,常数操作数量T(n)的一个指标,这个指标反映了当前算法在数据量增加时执行效率减缓的速度,常用O(读作big O)表示。具体来说,需要算出算法流程中发生了多少常数操作,进而总结成常数操作数量的表达式。

    在表达式中,只要去除系数的最高项(n相对于n2,在数据量激增的背景下,可忽略不计),例如:

    T(n) = 2n3+7n2-9 -> O(n3)

    for(int i = 0; i < n; i++){
         
        sum += i;
    }
    sum *=2
    // T(n)= n + 1  ->  O(n)
        
    for(int i = 0; i < n; i++){
         
        for(int j = 0; j <= i; j++){
         
            sum += j;
        }
    }
    sum ^= 3
    // T(n)= n(n-1)/2 + 1  ->  O(n^2)
    
  • 评价算法流程的好坏,优先观察时间复杂度的指标,进而分析不同数据样本下的实际运行时间,也就是“常数项”时间。

  • 对于更复杂的递归时间复杂度运算,可提前浏览递归中的Master公式内容。

  • 常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(logn)<Ο(n)<Ο(nlogn)<Ο(nk) < Ο(2n),随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低

🍿基本的排序算法的时间复杂度

✨冒泡排序/起泡排序(Bubble Sort)

  • 实现思路
    • 从第一位起,分别依次比较下标为(1,2)、(2,3)、(3,4)…的值,若前者大于后者,则交换两个数
    • 从头到尾执行完一轮后,数组中最大数被移动到数组尾部,继续进行第二轮、第三轮比较,分别将第二大、第三大的数移动到尾部
    • 总共进行n-1轮,每轮选择最大值的过程就像是水中气泡冒出的过程,逐渐浮出到水面
  • 图示:

img

  • 代码实现
public static void bubbleSort(int[] arr){
   
    if(arr == null || arr.length < 2){
   
        return;
    }

    for(int i = arr.length - 1; i > 0; i--){
   
        for(int j = 0; j < i; j++){
   
            if(arr[j] > arr[j+1]){
   
                swap(arr, j, j+1);
            }
        }
    }
}

// 交换两数的值
public static void swap(int[] arr, int i, int j){
   
    arr[i] = arr[i] ^ arr[j];
    arr[j] = arr[i] ^ arr[j];
    arr[i] = arr[i] ^ arr[j];
}
  • 时间复杂度

    O(n2)

✨插入排序(Insertion Sort)

  • 实现思路

    • 每次排序前0~n位置的数,第一次使0-0位置有序,第二次为0-1,依次为0-2,0-3,0-n…

    • 每次从n位置往前看,当n位置比前方数(假设为k位置的数)小,交换两位数,再比较n位置和k-1位置,重复操作,当k==0 or n位置数大于k位置数 时结束,增大范围(n+1)继续比较

      取其中一次排序做解析:

      假设0-4范围已经排序,当前排序0-5范围

      arr = [2,5,8,9,10,4,23,3]

      (1)比较4和10,4<10,交换位置

      arr = [2,5,8,9,4,10,23,3]

      (2)比较4和9,4<9,交换位置

      arr = [2,5,8,4,9,10,23,3]

      (3)比较4和8,4<8,交换位置

      arr = [2,5,4,8,9,10,23,3]

      (4)比较4和5,4<5,交换位置

      arr = [2,4,5,8,9,10,23,3]

      (5)比较4和2,4>2,0-5范围排序完成,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值