按要求编写以下程序。
(1)先根据输入的带空树标记的先序序列建立二叉树的链式存储结构;
(2)分别求出并输出该二叉树的先序、中序和后序遍历序列;
(3)设计并实现计算树高度的算法。
#include <stdio.h>
#include <iostream>
#include <string>
using namespace std;
typedef struct BiTNode
{
char data;
struct BiTNode* lchild, * rchild; //左右孩子指针
} BiTNode, * BiTree; //二叉链表存储结构
// 初始化二叉树
void InitBiTree(BiTree& T)
{
T = NULL;
}
// 先序遍历的顺序建立二叉树的函数
void CreateBiTree(BiTree& T)
{
char ch;
cin >> ch;
if (ch == '#')
T = NULL;
else
{
T = new BiTNode;
T->data = ch;
CreateBiTree(T->lchild); //递归创建左子树
CreateBiTree(T->rchild); //递归创建右子树
}
}
// 先序遍历
void PreOrderTraverse(BiTree T)
{
if (T)
{
cout << T->data; //访问根结点
PreOrderTraverse(T->lchild); //先序遍历左子树
PreOrderTraverse(T->rchild); //先序遍历右子树
}
}
// 中序遍历
void InOrderTraverse(BiTree T)
{
if (T)
{
InOrderTraverse(T->lchild); //中序遍历左子树
cout << T->data; //访问根结点
InOrderTraverse(T->rchild); //中序遍历右子树
}
}
// 后序遍历
void PostOrderTraverse(BiTree T)
{
if (T)
{
PostOrderTraverse(T->lchild);
PostOrderTraverse(T->rchild);
cout << T->data;
}
}
// 计算二叉树的深度
int Depth(BiTree T)
{
if (T == NULL)
return 0;
else
{
int m = Depth(T->lchild);
int n = Depth(T->rchild);
return max(m, n) + 1; // 返回左右子树深度的最大值加上根节点
}
}
int main()
{
int choice;
BiTree T;
InitBiTree(T);
printf("请输入要创建的二叉树,按先序序列输入,空树用字符'#'代替:\n");
CreateBiTree(T);
printf("此时先序遍历二叉树为:");
PreOrderTraverse(T);
printf("\n");
printf("中序遍历二叉树为:");
InOrderTraverse(T);
printf("\n");
printf("后序遍历二叉树为:");
PostOrderTraverse(T);
printf("\n");
printf("二叉树的深度为:%d\n", Depth(T));
return 0;
}