代码随想录算法训练营
Day24代码随想录算法训练营第 24 天 |LeetCode93.复原IP地址 LeetCode 78.子集 LeetCode 90子集ii
目录
前言
LeetCode93.复原IP地址
LeetCode 78.子集
LeetCode 90子集ii
一、基础
二、LeetCode93.复原IP地址
1.题目链接
2.思路
(1)检验是否有效:
如果左边端点下标大于右边------无效
如果长度大于3----------------------无效
如果第一个字符是0
不仅有0这一个字符---------------无效
只有这一个字符--------------------有效
子串里有非数字字符-------------无效
子串代表的数字大于255--------无效
其他----------------------------------有效
(2)递归
1)参数:字符串S和起始下标
2)边界:当加入三个点号时进行返回,要判断最后一个子串是否有效,有效则保存答案
3)单层递归
遍历,选择子串终点下标
插入点号
记录插入点号个数
递归调用:起点变为i+2,因为点号占了i+1这个位置
回溯:擦除点号,插入点号个数-1
在s上进行插入比新建一个字符串存答案更容易回溯
3.题解
class Solution {
public:
vector<string> res;
int sum = 0;
bool isvalid(string s, int l, int r) {
if (r - l > 2)
return false;
if (l > r)
return false;
if (s[l] == '0') {
if (l != r)
return false;
else
return true;
}
int num = 0;
for (int i = l; i <= r; i++) {
if (s[i] > '9' || s[i] < '0')
return false;
num = num * 10 + (s[i] - '0');
}
if (num > 255)
return false;
return true;
}
void func(string s, int start) {
if (sum == 3) {
if (isvalid(s, start, s.size() - 1)) {
res.push_back(s);
}
return;
}
for (int i = start; i < s.size(); i++) {
if (isvalid(s, start, i)) {
sum++;
s.insert(s.begin() + i + 1, '.');
func(s, i + 2);
s.erase(s.begin() + 1 + i);
sum--;
} else
break;
}
}
vector<string> restoreIpAddresses(string s) {
func(s, 0);
return res;
}
};
三、LeetCode 78.子集
1.题目链接
2.思路
(1)和组合问题、分割问题的区别:
1)组合问题、分割问题是收集树的叶子结点,只在边界条件处(最后一次递归)收集答案
2)子集问题是收集树的所有节点,每层递归都要收集答案
(2)递归
1)参数:数组引用,起始下标
2)边界条件:起始下标大于等于数组大小,没必要单独写一个语句,因为超出边界的时候不进入for循环,直接返回
3)单层递归:
遍历当前要加入的点
加入子集,将新子集放进答案,递归,回溯
注意在调func之前先在答案里加一个空数组
3.题解
class Solution {
public:
vector<vector<int>> res;
vector<int> path;
void func(vector<int>& nums, int start) {
for (int i = start; i < nums.size(); i++) {
path.push_back(nums[i]);
res.push_back(path);
func(nums, i + 1);
path.pop_back();
}
}
vector<vector<int>> subsets(vector<int>& nums) {
res.push_back(path);
func(nums, 0);
return res;
}
};
四、LeetCode90子集ii
1.题目链接
2.思路
相当于LeetCode40.组合总和ii和LeetCode 78.子集的总综合
(1)采用了LeetCode40.组合总和ii的去重思路,详见这篇文章
(之前对去重理解有误,现已在该文章内修改)
(2)采用LeetCode 78.子集的存放答案的逻辑
3.题解
class Solution {
public:
vector<vector<int>> res;
vector<int> path;
vector<bool> used;
void func(vector<int>& nums, int start) {
for (int i = start; i < nums.size(); i++) {
if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false)
continue;
path.push_back(nums[i]);
used[i] = true;
res.push_back(path);
func(nums, i + 1);
path.pop_back();
used[i] = false;
}
}
vector<vector<int>> subsetsWithDup(vector<int>& nums) {
sort(nums.begin(), nums.end());
for (int i = 0; i < nums.size(); i++) {
used.push_back(false);
}
res.push_back(path);
func(nums, 0);
return res;
}
};
总结
子集问题和组合、分割不同
1)组合问题、分割问题是收集树的叶子结点,只在边界条件处(最后一次递归)收集答案
2)子集问题是收集树的所有节点,每层递归都要收集答案