题目:
请编写程序输出前n个正整数的全排列(n<10),并通过9个测试用例(即n从1到9)观察n逐步增大时程序的运行时间。
输入格式:
输入给出正整数n(<10)。
输出格式:
输出1到n的全排列。每种排列占一行,数字间无空格。排列的输出顺序为字典序,即序列a1,a2,⋯,an排在序列b1,b2,⋯,bn之前,如果存在k使得a1=b1,⋯,ak=bk 并且 ak+1<bk+1。
输入样例:
3
输出样例:
123
132
213
231
312
321
代码及思路:
#include<bits/stdc++.h>
using namespace std;
int n;
//g数组用来存储每个排列的元素
int g[11];
//hashtable数组来标记数字是否使用过
bool hashtable[11];
//solve函数是递归函数,index是当前要填入的位置
void solve(int index)
{
//如果当前位置已经超过了n,则一个完整全排列已经生成
if(index>n)
{
for(int i=1;i<=n;i++)
{
cout<<g[i];
}
cout<<endl;
}
//遍历1~n,将每个数字填入当前的排列中
for(int x=1;x<=n;x++)
{
//如果这个数字未被使用,则填入当前位置
if(hashtable[x] == false)
{
//填入
g[index] = x;
//标记使用过
hashtable[x] = true;
//填入下一个位置
solve(index+1);
//递归返回后,将当前位置得的数字标记为未使用,以便后续的排列
hashtable[x] = false;
}
}
}
int main()
{
cin>>n;
//初始位置是1
solve(1);
return 0;
}