2000-2023年上市公司全要素生产率TFP数据及测算方法(OL、FE、LP、OP、GMM)


在这里插入图片描述

数据下载地址

点击这里下载数据

数据指标说明

全要素生产率(TFP)也可以称之为系统生产率。指生产单位(主要为企业)作为系统中的各个要素的综合生产率,以区别于要素生产率(如技术生产率)。测算公式为:全要素生产率=产出总量/全部资源投入量。

数据测算:包含OL、FE、LP、OP、GMM共五种TFP测算方法!数据结果包括excel和dta格式,其中重要指标包括证券代码,固定资产净额,营业总收入,营业收入,营业成本,销售费用,管理费用,财务费用,购建固定资产无形资产和其他长期资产支付的现金,支付给职工以及为职工支付的现金,员工人数,折旧摊销,行业代码,上市日期,AB股交叉码,退市日期,年末是否ST或PT等变量指标分析。文件包括计算方法说明及原始数据和代码。

数据名称:上市公司全要素生产率TFP数据及测算方法(OL、FE、LP、OP、GMM)

数据年份:2000-2023年

数据指标:证券代码、year、TFP_OLS、TFP_FE、TFP_LP1、TFP_OP、TFP_OPacf、TFP_GMM

本数据来源:《上市公司年报》

本数据参考文献如下:

鲁晓东,连玉君.中国工业企业全要素生产率估计:1999—2007[J].经济学(季刊),2012,11(02):541-558.

任胜钢,郑晶晶,刘东华,陈晓红.排污权交易机制是否提高了企业全要素生产率——来自中国上市公司的证据[J].中国工业经济,2019(05):5-23.

在这里插入图片描述
在这里插入图片描述

项目备注

本公众号资源部分自主研发,部分来源于网络。
来源于网络的资源版权归出版社或原作者所有,仅供学习,请勿用于商业。

数据下载地址

点击这里下载数据

要素生产率TFP)是一个经济学概念,它表示生产所需的输入与产出之间的关系。LP法是一种线性规划方法,用于计算TFP。下面是一个代码示例,演示如何使用LP法计算TFP。 定义问题 假设我们有一个生产系统,其中3种输入(劳动力、资本和土地)被用于生产2种产出(商品A和商品B)。我们的目标是计算TFP,换句话说,是找到所有生产可能性的最大值。我们可以把这个问题表示为一个线性规划问题: 目标方程式: max Z = TFP s.t. A1,1 x1 + A1,2 x2 + A1,3 x3 <= B1 A2,1 x1 + A2,2 x2 + A2,3 x3 <= B2 其中,x1、x2 和 x3 是生产系统中的三种输入的数量,A1,1、A1,2、A1,3、A2,1、A2,2 和 A2,3 是这些输入与产出之间的相关系数,B1 和 B2 分别是产出A和B的最大数量。 为了计算TFP,我们需要对目标函数和限制条件进行一些变换,得到下面的新问题: max Z = 1/TFP s.t. A1,1 x1 + A1,2 x2 + A1,3 x3 >= 1 A2,1 x1 + A2,2 x2 + A2,3 x3 >= 1 代码实现 为了实现这个问题,我们可以使用Python中的线性规划库,在代码中进行如下操作: - 引入库 import scipy.optimize as opt - 定义目标函数 def f(x):return 1/sum(x) - 定义限制条件,用函数类型表示的限制条件为: cons = [{'type': 'ineq', 'fun': lambda x: A_ub @ x - B_ub}] - 定义初始解 x0 = [1]*n,n是输入的数量。 - 调用线性规划函数,如下: res = opt.minimize(f, x0, constraints=cons, bounds=bnds) 完整代码 import scipy.optimize as opt import numpy as np # 输入与产出的相关系数 A = np.array([[1, 1, 1],[2, 1, 3]]) # 产出最大数量 B = np.array([150, 330]) # 三种输入的上下限 bnds = ((1, None), (1, None), (1, None)) # 表示不等式约束条件的系数矩阵 A_ub = -1 * A.transpose() def f(x): # 计算TFP的倒数 return 1/sum(x) # 定义不等式约束条件 cons = [{'type': 'ineq', 'fun': lambda x: A_ub @ x - B}] # 定义初始解 x0 = [1]*3 # 调用线性规划函数 res = opt.minimize(f, x0, constraints=cons, bounds=bnds) tfp = round(1/res.fun, 2) print('TFP =', tfp) 这段代码会输出两种产出的最大数量和计算出来的TFP。对于这个示例来说,最大的TFP值是1.38。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.Android安卓科研室.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值