NUMPY笔记

一、数组的创建

import numpy as np

创建数组:a=np.array([1,2,3,4,5])(ndarray类型)

        a=np.arange(1,10,1)等于a=np.array(range(10))

dtype:当前数组所存放数据类型(如:int32(位数)、float64……)

调整dtype类型

random.random()可取0到1的小数

round可取小数位数

t8=np.round(t7,2)输出0.**

二、数组的计算

xx.shape得到(块数,行数,列数)(有几个数代表几维)

Array([[aaa],[sss]])(中括号数代表维数)

修改形状:reshape((元组))(创建新的)

Shape{0}、shape{1}等指行数,列数等

a.flatten():直接降低一个维度

广播:t5+2可使数组内每个数都加二

      T5+t6可使数组每个对应行数/列数的数相加,(不同维度也行,但一定要有对应的行数或列数相等)

nan:不是一个数字(浮点型)        inf:无穷

三、numpy读取本地数据

轴(axis):0,1,2……

unpack=True:转置(让数组沿对角线翻转)(同transpose()、swapaxes(1,0)、T)

四、numpy中的索引和切片

取行

取一行:print(t2[2])

取连续多行:print(t2[2:])(第三行往后)

取不连续的多行:print(t2[[2,8,10]])

取列

Print(t2[1,:])

Print(t2[2:,:])

Print(t2[[2,10,3],:])

取数

Print(t2[1,2])

取多行多列(取交叉)

Print(t2[2:5,1:4])

取多个不相等的点

Print(t2[[0,1],[0,1]])(取出(0,0)和(1,1))

五、numpy中更多的索引方法

修改

T[:,2:4]=0

T2<10:输出True和False的数组

T2[t2<10]=0

三元运算符

Np.where(t<10,0,10)(t<10变成0,其余变为10)

Clip(裁剪)

t.clip(10,18)(把小于10的替换成10,大于18的替换成18)

将整数替换为nan类型

六、numpy中的nan和常用统计方法

Inf:正无穷       -inf:负无穷

Np.nan!=np.nan输出True

Np.isnan等同于t2!=t

Np.sum(t3,axis=0)输出array([第一列数值总和][ 第二列数值总和][ 第三列数值总和])(跨行求和

七、numpy中填充nan和youtube数据的练习

八、数据的拼接

Np.vstack((t1,t2)):竖直拼接

Np.hstack((t1,t2)):水平拼接

T[[1,2],:]= T[[2,1],:]行交换

九、numpy中的随机方法

 

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值