一、数组的创建
import numpy as np
创建数组:a=np.array([1,2,3,4,5])(ndarray类型)
a=np.arange(1,10,1)等于a=np.array(range(10))
dtype:当前数组所存放数据类型(如:int32(位数)、float64……)
调整dtype类型
random.random()可取0到1的小数
round可取小数位数
t8=np.round(t7,2)输出0.**
二、数组的计算
xx.shape得到(块数,行数,列数)(有几个数代表几维)
Array([[aaa],[sss]])(中括号数代表维数)
修改形状:reshape((元组))(创建新的)
Shape{0}、shape{1}等指行数,列数等
a.flatten():直接降低一个维度
广播:t5+2可使数组内每个数都加二
T5+t6可使数组每个对应行数/列数的数相加,(不同维度也行,但一定要有对应的行数或列数相等)
nan:不是一个数字(浮点型) inf:无穷
三、numpy读取本地数据
轴(axis):0,1,2……
unpack=True:转置(让数组沿对角线翻转)(同transpose()、swapaxes(1,0)、T)
四、numpy中的索引和切片
取行
取一行:print(t2[2])
取连续多行:print(t2[2:])(第三行往后)
取不连续的多行:print(t2[[2,8,10]])
取列
Print(t2[1,:])
Print(t2[2:,:])
Print(t2[[2,10,3],:])
取数
Print(t2[1,2])
取多行多列(取交叉)
Print(t2[2:5,1:4])
取多个不相等的点
Print(t2[[0,1],[0,1]])(取出(0,0)和(1,1))
五、numpy中更多的索引方法
修改
T[:,2:4]=0
T2<10:输出True和False的数组
T2[t2<10]=0
三元运算符
Np.where(t<10,0,10)(t<10变成0,其余变为10)
Clip(裁剪)
t.clip(10,18)(把小于10的替换成10,大于18的替换成18)
将整数替换为nan类型
六、numpy中的nan和常用统计方法
Inf:正无穷 -inf:负无穷
Np.nan!=np.nan输出True
Np.isnan等同于t2!=t
Np.sum(t3,axis=0)输出array([第一列数值总和][ 第二列数值总和][ 第三列数值总和])(跨行求和)
七、numpy中填充nan和youtube数据的练习
八、数据的拼接
Np.vstack((t1,t2)):竖直拼接
Np.hstack((t1,t2)):水平拼接
T[[1,2],:]= T[[2,1],:]行交换
九、numpy中的随机方法