质数筛选法以及相关例题

素数筛法

引入

如果我们想要知道小于等于 n有多少个素数呢?

一个自然的想法是对于小于等于 n 的每个数进行一次质数检验。这种暴力的做法显然不能达到最优复杂度。

埃拉托斯特尼筛法

过程

考虑这样一件事情:对于任意一个大于 1的正整数 x,那么它的 k倍就是合数。利用这个结论,我们可以避免很多次不必要的检测。

如果我们从小到大考虑每个数,然后同时把当前这个数的所有(比自己大的)倍数记为合数,那么运行结束的时候没有被标记的数就是素数了。

实现
vector<int> prime;
bool is_prime[N];

void Eratosthenes(int n) {
  is_prime[0] = is_prime[1] = false;
  for (int i = 2; i <= n; ++i) is_prime[i] = true;
  for (int i = 2; i <= n; ++i) {
    if (is_prime[i]) {
      prime.push_back(i);
      if ((long long)i * i > n) continue;
      for (int j = i * i; j <= n; j += i)
        // 因为从 2 到 i - 1 的倍数我们之前筛过了,这里直接从 i
        // 的倍数开始,提高了运行速度
        is_prime[j] = false;  // 是 i 的倍数的均不是素数
    }
  }
}

时间复杂度(nloglogn);

筛至平方根

显然,只需筛至不超过sqrt(n)的素数即可;

优化代码
vector<int> prime;
bool is_prime[N];

void Eratosthenes(int n) {
  is_prime[0] = is_prime[1] = false;
  for (int i = 2; i <= n; ++i) is_prime[i] = true;
  for (int i = 2; i * i <= n; ++i) {
    if (is_prime[i]) {
      prime.push_back(i);
      if ((long long)i * i > n) continue;
      for (int j = i * i; j <= n; j += i)
        // 因为从 2 到 i - 1 的倍数我们之前筛过了,这里直接从 i
        // 的倍数开始,提高了运行速度
        is_prime[j] = false;  // 是 i 的倍数的均不是素数
    }
  }
}

线性筛法

埃氏筛法仍有优化空间,它会将一个合数重复多次标记。有没有什么办法省掉无意义的步骤呢?答案是肯定的。

如果能让每个合数都只被标记一次,那么时间复杂度就可以降到n了。

实现C++

线性筛法
埃氏筛法仍有优化空间,它会将一个合数重复多次标记。有没有什么办法省掉无意义的步骤呢?答案是肯定的。

如果能让每个合数都只被标记一次,那么时间复杂度就可以降到 O(n) 了。

实现

C++
Python
vector<int> pri;
bool not_prime[N];

void pre(int n) {
  for (int i = 2; i <= n; ++i) {
    if (!not_prime[i]) {
      pri.push_back(i);
    }
    for (int pri_j : pri) {
      if (i * pri_j > n) break;
      not_prime[i * pri_j] = true;
      if (i % pri_j == 0) {
        // i % pri_j == 0
        // 换言之,i 之前被 pri_j 筛过了
        // 由于 pri 里面质数是从小到大的,所以 i 乘上其他的质数的结果一定会被
        // pri_j 的倍数筛掉,就不需要在这里先筛一次,所以这里直接 break
        // 掉就好了
        break;
      }
    }
  }
}

上面的这种 线性筛法 也称为 Euler 筛法(欧拉筛法)

上面的这种 线性筛法 也称为 Euler 筛法(欧拉筛法)

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zzcat.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值