7-10 解一元二次方程

请编写程序,解一元一次方程 ax2+bx+c=0 。

已知一元二次方程的求根公式为:

题图.jpg

要求:

  • 若 a=0,则为一元一次方程。
    • 若 b=0,则方程有唯一解,输出这个解;
    • 否则 b=0,
      • 若 c=0,则方程无解,输出“无解”;
      • 否则 c=0,则方程有无穷多解,输出“无穷多解”。
  • 若 a=0,则为一元二次方程。
    • 若 Δ>0,则方程有两个不等的实根,输出这两个根;
    • 若 Δ=0,则方程有两个相等的实根,输出这两个根;
    • 若 Δ<0,则方程有两个共轭的虚根,输出这两个根。
输入格式

a,b,c

输出格式

x 或 x1​,x2​

注:所有实数均输出6位有效数字,且不输出末尾无意义的0和小数点。

输入样例1
0 4.5 -3.6

输出样例1
x = 0.8

输入样例2
0 2.8 0

输出样例2
x = 0

输入样例3
0 0 3.6

输出样例3
无解

输入样例4
0 0 0

输出样例4
无穷多解

输入样例5
-2 0.8 -0.06

输出样例5
x1 = 0.1, x2 = 0.3

输入样例6
-1 0.2 0

输出样例6
x1 = 0, x2 = 0.2

输入样例7
-3 1.2 -0.12

输出样例7
x1 = x2 = 0.2

输入样例8
0.3 0 0

输出样例8
x1 = x2 = 0

输入样例9
-0.2 0.04 -0.01

输出样例9
x1 = 0.1-0.2i, x2 = 0.1+0.2i

输入样例10
3 0 0.27

输出样例10
x1 = 0+0.3i, x2 = 0-0.3i

提示:注意实数的负零问题和误差问题。

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

栈限制

8192 KB

#include<stdio.h>
#include<math.h>

int main() {
    double a, b, c;
    double x1, x2, x;
    scanf("%lf %lf %lf", &a, &b, &c);
    
    if (a == 0) {
        if (b != 0) {
            x = -c / b;
            if(x==0)
            {x=abs(x);}
            printf("x = %g", x);
        } else if (c != 0) {
            printf("无解");
        } else {
            printf("无穷多解");
        }
    } else {
        double dart = b * b - 4 * a * c;
        if (dart > 0) {
            x1 = (-b + sqrt(dart)) / (2 * a);
            x2 = (-b - sqrt(dart)) / (2 * a);
            if(x1==0)
            {
                x1=abs(x1);
            }
            printf("x1 = %g, x2 = %g\n", x1, x2);
        } else if (dart == 0) {
            x = -b / (2 * a);
            if(x==0)
            {
                x=abs(x);
            }
            printf("x1 = x2 = %g\n", x);
        } else {
            double real= -b / (2 * a);
            if(real==0)
            {
                real=abs(real);
            }
            double imag= sqrt(-dart) / (2 * a);
            printf("x1 = %g%+.gi, x2 = %.g%+.gi\n", real, imag, real, -imag);
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值