请编写程序,解一元一次方程 ax2+bx+c=0 。
已知一元二次方程的求根公式为:
要求:
- 若 a=0,则为一元一次方程。
- 若 b=0,则方程有唯一解,输出这个解;
- 否则 b=0,
- 若 c=0,则方程无解,输出“无解”;
- 否则 c=0,则方程有无穷多解,输出“无穷多解”。
- 若 a=0,则为一元二次方程。
- 若 Δ>0,则方程有两个不等的实根,输出这两个根;
- 若 Δ=0,则方程有两个相等的实根,输出这两个根;
- 若 Δ<0,则方程有两个共轭的虚根,输出这两个根。
输入格式
a,b,c
输出格式
x 或 x1,x2
注:所有实数均输出6位有效数字,且不输出末尾无意义的0和小数点。
输入样例1
0 4.5 -3.6
输出样例1
x = 0.8
输入样例2
0 2.8 0
输出样例2
x = 0
输入样例3
0 0 3.6
输出样例3
无解
输入样例4
0 0 0
输出样例4
无穷多解
输入样例5
-2 0.8 -0.06
输出样例5
x1 = 0.1, x2 = 0.3
输入样例6
-1 0.2 0
输出样例6
x1 = 0, x2 = 0.2
输入样例7
-3 1.2 -0.12
输出样例7
x1 = x2 = 0.2
输入样例8
0.3 0 0
输出样例8
x1 = x2 = 0
输入样例9
-0.2 0.04 -0.01
输出样例9
x1 = 0.1-0.2i, x2 = 0.1+0.2i
输入样例10
3 0 0.27
输出样例10
x1 = 0+0.3i, x2 = 0-0.3i
提示:注意实数的负零问题和误差问题。
代码长度限制
16 KB
时间限制
400 ms
内存限制
64 MB
栈限制
8192 KB
#include<stdio.h>
#include<math.h>
int main() {
double a, b, c;
double x1, x2, x;
scanf("%lf %lf %lf", &a, &b, &c);
if (a == 0) {
if (b != 0) {
x = -c / b;
if(x==0)
{x=abs(x);}
printf("x = %g", x);
} else if (c != 0) {
printf("无解");
} else {
printf("无穷多解");
}
} else {
double dart = b * b - 4 * a * c;
if (dart > 0) {
x1 = (-b + sqrt(dart)) / (2 * a);
x2 = (-b - sqrt(dart)) / (2 * a);
if(x1==0)
{
x1=abs(x1);
}
printf("x1 = %g, x2 = %g\n", x1, x2);
} else if (dart == 0) {
x = -b / (2 * a);
if(x==0)
{
x=abs(x);
}
printf("x1 = x2 = %g\n", x);
} else {
double real= -b / (2 * a);
if(real==0)
{
real=abs(real);
}
double imag= sqrt(-dart) / (2 * a);
printf("x1 = %g%+.gi, x2 = %.g%+.gi\n", real, imag, real, -imag);
}
}
return 0;
}