定理1 顶点度之和恰等于边数的两倍
定理2:任意奇度顶点数为偶
证明:巧妙的去一边变换
定理3:关于顶点最大度
子图和生成子图的区别:
生成子图必须V=V’ 顶点必须和母图一致
子图不要求V=V'
图同构
一些特殊的图类型
完全图
完全图要求每个顶点都是最大度
故易得对于每个正整数n,完全图都唯一
正则图是完全图的退化版本,每个顶点的个数都是k个
正则图的边数容易计算
二部图可以用边把对应的端点分为两个部分,即是一种划分点集的图。
图的运算
注意:每去掉一个点,相当于去掉与这个点相关联的所有边
通路
简单通路,初级通路区别
简单通路不能包含重复的边,但可以有重复的点
初级通路不能含有重复的边或者重复的点
易有通路存在性定理
将连通定义为之间存在通路
可以得出连通性是一个等价关系
故可以划分出一个等价类
划分出的部分称为连通分支
定理:如果一个图不连通,则其补图连通。、
那么如何度量连通性,即如何描述连通的牢固程度呢?
下面定义点割集和边割集
割集用于描述去除一些元素导致连通分支数增加的元素集合‘
有以下命题
点连通度可以用于描述图的连通程度强与弱
k连通图指删除少于k个顶点无法使其不连通的图。
下面是一些特殊图的连通性
对于连通度有如下结论