图论基本知识

本文概述了图论中的几个关键定理,如顶点度的性质、奇度顶点、生成子图与子图的区别、图同构、完全图与正则图的概念,以及通路、连通性和连通分支的定义。讨论了度量连通性的方法,包括点割集和边割集,并介绍了k连通图的概念及其连通度特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定理1 顶点度之和恰等于边数的两倍

定理2:任意奇度顶点数为偶

证明:巧妙的去一边变换

定理3:关于顶点最大度

子图和生成子图的区别:

生成子图必须V=V’  顶点必须和母图一致

子图不要求V=V'


图同构

一些特殊的图类型

完全图

完全图要求每个顶点都是最大度

故易得对于每个正整数n,完全图都唯一

正则图是完全图的退化版本,每个顶点的个数都是k个

正则图的边数容易计算

二部图可以用边把对应的端点分为两个部分,即是一种划分点集的图。

图的运算

注意:每去掉一个点,相当于去掉与这个点相关联的所有边

通路

简单通路,初级通路区别

简单通路不能包含重复的边,但可以有重复的点

初级通路不能含有重复的边或者重复的点

易有通路存在性定理

将连通定义为之间存在通路

可以得出连通性是一个等价关系

故可以划分出一个等价类

划分出的部分称为连通分支

定理:如果一个图不连通,则其补图连通。、

那么如何度量连通性,即如何描述连通的牢固程度呢?

下面定义点割集和边割集

割集用于描述去除一些元素导致连通分支数增加的元素集合‘

有以下命题

点连通度可以用于描述图的连通程度强与弱

k连通图指删除少于k个顶点无法使其不连通的图。

下面是一些特殊图的连通性

对于连通度有如下结论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值