二叉树

目录

二叉树

1.树概念及结构

1.1树的概念

1.2 树的相关概念

1.3 树的表示

1.4 树在实际中的运用(表示文件系统的目录树结构)

2.二叉树概念及结构

2.1二叉树的概念

2.2现实中的二叉树:(开心一刻)

2.3 特殊的二叉树:

2.4 二叉树的性质

2.5 二叉树的存储结构

3.二叉树顺序结构及实现

3.1 二叉树的顺序结构

3.2 堆的概念及结构

3.3 堆的实现

3.2.1 堆向下调整算法

3.2.2堆的创建

3.2.3 建堆的时间复杂度

3.2.4 堆的插入

3.2.5 堆的删除

3.2.6 堆的代码实现

3.4 堆的应用

3.4.1 堆排序

3.4.2 TOP-K问题

4.二叉树链式结构及实现

4.1 前置说明

4.2二叉树的遍历

4.2.1 前序、中序以及后序遍历

4.2.2 层序遍历

4.3 节点个数以及高度等

4.4 二叉树基础练习

4.5 二叉树的创建和销毁

二叉树

1.树概念及结构

1.1树的概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

有一个特殊的结点,称为根结点,根节点没有前驱结点;除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继;因此,树是递归定义的

注意:树形结构中,子树之间不能有交集,否则就不是树形结构 

1.2 树的相关概念

节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6
叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点
非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点
双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点
孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点
兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点
树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6
节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
树的高度或深度:树中节点的最大层次; 如上图:树的高度为4
堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点
节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
森林:由m(m>0)棵互不相交的树的集合称为森林; 

1.3 树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间的关系,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。其中最常用的孩子兄弟表示法如下:

typedef int DataType;
struct Node
{
	struct Node* _firstChild1;
	// 第一个孩子结点
	struct Node* _pNextBrother;
	// 指向其下一个兄弟结点
	DataType _data;
	// 结点中的数据域
};

1.4 树在实际中的运用(表示文件系统的目录树结构)


2.二叉树概念及结构

2.1二叉树的概念

一棵二叉树是结点的一个有限集合,该集合:
        1. 或者为空
        2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

从上图可以看出:

1. 二叉树不存在度大于2的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

注意:对于任意的二叉树都是由以下几种情况复合而成的: 

2.2现实中的二叉树:(开心一刻)

2.3 特殊的二叉树:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.4 二叉树的性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点.
2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1
3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 ,则有n0 = n2+1
4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h = \log 2^{n+1} (ps:是log以2为底,n+1为对数)
5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:
        1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点
        2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子
        3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子

练习:

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A 不存在这样的二叉树
B 200
C 198
D 199

解:对任何一棵二叉树, 如果度为0其叶结点个数为n0 , 度为2的分支结点个数为n2 , 则有n0 = n2+1 , 所以有:n0 = n2 +1 = 200 答案选B

2.下列数据结构中,不适合采用顺序存储结构的是( )
A 非完全二叉树
B 堆
C 队列
D 栈

解:堆是特殊的完全二叉树,可以用数组存储,栈的入栈和出栈都是在栈顶,适合使用数组存储,非完全二叉树用数组存储时,留用空白,造成空间浪费,用链表存储相对合适,队列用数组存储时,队列的的删除操作效率较低,也是用链表存储相对合适 所以答案选A和C

3.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A n
B n+1
C n-1
D n/2

解:二叉树中总结点数等于度为0的节点、度为1的节点与度为2的结点之和,所以有2n = n0 + n1 + n2、n0 = n2 + 1,又因为这是完全二叉树,所以度为1的节点个数不是0就是1,则有:n1 = 0或n1 = 1;根据以上不难得出n1 = 1,n0 = n ,所以答案选A

4.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A 11
B 10
C 8
D 12

解:设高度为h,则有2^h -1 >= 531,2^(h-1) -1 < 531,所以答案选B

5.一个具有767个节点的完全二叉树,其叶子节点个数为()
A 383
B 384
C 385
D 386

解:二叉树中总结点数等于度为0的节点、度为1的节点与度为2的结点之和,所以有767 = n0 + n1 + n2、n0 = n2 + 1,又因为这是完全二叉树,所以度为1的节点个数不是0就是1,则有:n1 = 0或n1 = 1;根据以上不难得出n0 = 384 ,所以答案选B

2.5 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

1. 顺序存储
顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费。而现实中使用中只有堆才会使用数组来存储(关于堆后面的章节会专门讲解),二叉树顺序存储在物理上是一个数组,在逻辑上是一颗二叉树。

2. 链式存储
二叉树的链式存储结构是指用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前为二叉链,后续讲红黑树等会用到三叉链。 

typedef int BTDataType;
// 二叉链
struct BinaryTreeNode
{
	struct BinTreeNode* _pLeft;
	// 指向当前节点左孩子
	struct BinTreeNode* _pRight; // 指向当前节点右孩子
	BTDataType _data; // 当前节点值域
};
// 三叉链
struct BinaryTreeNode
{
	struct BinTreeNode* _pParent; // 指向当前节点的双亲
	struct BinTreeNode* _pLeft;
	// 指向当前节点左孩子
	struct BinTreeNode* _pRight; // 指向当前节点右孩子
	BTDataType _data; // 当前节点值域
};

3.二叉树顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

3.2 堆的概念及结构

堆(英语:heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。

(ki<= k2i,ki<= k2i+1)或者(ki>= k2i,ki>= k2i+1), (i = 1,2,3,4...n/2)

堆的性质如下:

1.堆中某个节点的值总是不大于或不小于其父节点的值

2.堆总是一棵完全二叉树

练习: 

1.下列关键字序列为堆的是:()
A 100,60,70,50,32,65
B 60,70,65,50,32,100
C 65,100,70,32,50,60
D 70,65,100,32,50,60
E 32,50,100,70,65,60
F 50,100,70,65,60,32

 解:答案选A,略...


2.已知小根堆为8,15,10,21,34,16,12,删除关键字 8 之后需重建堆,在此过程中,关键字之间的比较次数是()
A 1
B 2
C 3
D 4

解:删除对顶元素的操作方法为:先交换堆顶元素与堆尾元素,然后再删除堆尾元素,再重建堆

如上图所示,在此过程中,依次为:15和10比较1次,12和10比较1次,12与16比较1次,共比较了3次,所以答案选C


3.一组记录排序码为(5 11 7 2 3 17),则利用堆排序方法建立的初始堆为()
A(11 5 7 2 3 17)
B(11 5 7 2 17 3)
C(17 11 7 2 3 5)
D(17 11 7 5 3 2)
E(17 7 11 3 5 2)
F(17 7 11 3 2 5)

解:答案选C,除C选项外,其他选项都不满足堆的性质(堆中某个节点的值总是不大于或不小于其父节点的值)


4.最小堆[0,3,2,5,7,4,6,8],在删除堆顶元素0之后,其结果是()
A[3,2,5,7,4,6,8]
B[2,3,5,7,4,6,8]
C[2,3,4,5,7,8,6]
D[2,3,4,5,6,7,8]

解:删除对顶元素的操作方法为:先交换堆顶元素与堆尾元素,然后再删除堆尾元素,再重建堆

 由上图可知,答案选C

3.3 堆的实现

3.2.1 堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整

int array[] = {27,15,19,18,28,34,65,49,25,37};

3.2.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

int a[] = {1,5,3,8,7,6};

 向下调整算法的代码实现:

void AdjustDown(HPDataType* a, int sz, int parent)
{
	int child = parent * 2 + 1;
	while (child < sz)
	{
		if (child + 1 < sz && a[child] > a[child + 1])
		{
			child++;
		}
		if (a[parent] > a[child])
		{
			Swap(&a[parent], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
3.2.3 建堆的时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):

因此:建堆的时间复杂度为O(N) 

3.2.4 堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。

3.2.5 堆的删除

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。

3.2.6 堆的代码实现
#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
#include<stdbool.h>

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}Heap;

//堆的创建初始化
void HeapInit(Heap* php);
//堆的销毁
void HeapDestroy(Heap* php);
//堆的插入
void HeapPush(Heap* php, HPDataType x);
//堆的删除
void HeapPop(Heap* php);
//取栈顶的数据
HPDataType HeapTop(Heap* php);
//堆的数据个数
int HeapSize(Heap* php);
//堆的判空
bool HeapEmpty(Heap* php);

void AdjustDown(HPDataType* a, int sz, int parent);

void Adjustup(HPDataType* a, int child);

void Swap(HPDataType* p1, HPDataType* p2);
#include"Heap.h"

//堆的初始化
void HeapInit(Heap* php)
{
	php->a = NULL;
	php->capacity = php->size = 0;
}

//堆的销毁
void HeapDestroy(Heap* php)
{
	free(php->a);
	php->a = NULL;
	php->capacity = php->size = 0;
}

void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType temp = *p1;
	*p1 = *p2;
	*p2 = temp;
}

void Adjustup(HPDataType* a, int child)
{
	int parent = 0;
	while (child > 0)
	{
		parent = (child - 1) / 2;
		if (a[parent] > a[child])
		{
			Swap(&a[parent], &a[child]);
			child = parent;
		}
		else
		{
			break;
		}
	}
}


//堆的插入
void HeapPush(Heap* php, HPDataType x)
{
	if (php->capacity == php->size)
	{
		int newcapacity = php->capacity == 0 ? 4 : 2 * php->capacity;
		HPDataType* temp = (HPDataType*)realloc(php->a, newcapacity * sizeof(HPDataType));
		if (!temp)
		{
			perror("realloc fail");
			return;
		}
		php->a = temp;
		php->capacity = newcapacity;
	}
	php->a[php->size] = x;
	php->size++;
	Adjustup(php->a, php->size - 1);
}

void AdjustDown(HPDataType* a, int sz, int parent)
{
	int child = parent * 2 + 1;
	while (child < sz)
	{
		if (child + 1 < sz && a[child] > a[child + 1])
		{
			child++;
		}
		if (a[parent] > a[child])
		{
			Swap(&a[parent], &a[child]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

//堆的删除
void HeapPop(Heap* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	Swap(&php->a[0], &php->a[php->size - 1]);
	php->size--;
	AdjustDown(php->a, php->size, 0);
}

//取栈顶的数据
HPDataType HeapTop(Heap* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	return php->a[0];
}

//堆的数据个数
int HeapSize(Heap* php)
{
	return php->size;
}

//堆的判空
bool HeapEmpty(Heap* php)
{
	return php->size == 0;
}

3.4 堆的应用

3.4.1 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:
1. 建堆
升序:建大堆
降序:建小堆
2. 利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

void HeapSort(int* a, int sz)
{
	for (int i = (sz - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, sz, i);
	}
	int end = sz - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		AdjustDown(a, end, 0);
		end--;
	}
}
3.4.2 TOP-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
        前k个最大的元素,则建小堆
        前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
        将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。


4.二叉树链式结构及实现

4.1 前置说明

在学习二叉树的基本操作前,需先要创建一棵二叉树。为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习,后续再研究二叉树真正的创建方式

typedef int BTDataType;
typedef struct BinaryTreeNode
{
	BTDataType _data;
	struct BinaryTreeNode* _left;
	struct BinaryTreeNode* _right;
}BTNode;
BTNode* CreatBinaryTree()
{
	BTNode* node1 = BuyNode(1);
	BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);
	node1->_left = node2;
	node1->_right = node4;
	node2->_left = node3;
	node4->_left = node5;
	node4->_right = node6;
	return node1;
}

注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序再讲解。 

回顾下二叉树的概念,二叉树是:
1. 空树
2. 非空:根节点,根节点的左子树、根节点的右子树组成的

从概念中可以看出,二叉树定义是递归式的,因此后序基本操作中基本都是按照该概念实现的 

4.2二叉树的遍历

4.2.1 前序、中序以及后序遍历

学习二叉树结构,最简单的方式就是遍历。所谓二叉树遍历(Traversal)是按照某种特定的规则,依次对二叉树中的节点进行相应的操作,并且每个节点只操作一次。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。

按照规则,二叉树的遍历有:前序/中序/后序的递归结构遍历:
1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后

由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历

//前序遍历
void PreOrder(BTNode* root)
{
	BTNode* tail = root;
	if (!tail)
	{
		printf("N ");
		return;
	}
	printf("%d ", tail->data);
	PreOrder(tail->left);
	PreOrder(tail->right);
}

//中序遍历
void InOrder(BTNode* root)
{
	BTNode* tail = root;
	if (!tail)
	{
		printf("N ");
		return;
	}
	InOrder(tail->left);
	printf("%d ", tail->data);
	InOrder(tail->right);
}

//后序遍历
void PostOrder(BTNode* root)
{
	BTNode* tail = root;
	if (!tail)
	{
		printf("N ");
		return;
	}
	PostOrder(tail->left);
	PostOrder(tail->right);
	printf("%d ", tail->data);
}

下面主要分析前序递归遍历,中序与后序图解类似,大家可以自己动手绘制

前序遍历递归图解:

前序遍历结果:1 2 3 4 5 6
中序遍历结果:3 2 1 5 4 6
后序遍历结果:3 2 5 6 4 1 

4.2.2 层序遍历

层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历

void LevelOrder(BTNode* root)
{
	Queue q;
	QueueInit(&q);
	QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		QDataType tmp = QueueFront(&q);
		if (tmp)
			printf("%d ", tmp->data);
		QueuePop(&q);
		if (tmp->left)
			QueuePush(&q, tmp->left);
		if (tmp->right)
			QueuePush(&q, tmp->right);
	}
}

练习:

1.某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为( )
A ABDHECFG
B ABCDEFGH
C HDBEAFCG
D HDEBFGCA

 解:答案选A,略


2.二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为()
A E
B F
C G
D H

 解:答案选A,略


3.设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为____。
A adbce
B decab
C debac
D abcde

 解:答案选D,略


4.某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出(同一层从左到右)的序列

A FEDCBA
B CBAFED
C DEFCBA
D ABCDEF 

 解:答案选A,略

4.3 节点个数以及高度等

int BTreeSize(BTNode* root)
{
	return root == NULL ? 0 : BTreeSize(root->left) + BTreeSize(root->right) + 1;
}


//叶子结点个数
int BTreeLeafSize(BTNode* root)
{
	if (root == NULL)
		return 0;
	if (root->left == NULL && root->right == NULL)
		return 1;
	return BTreeLeafSize(root->left) + BTreeLeafSize(root->right);
}

//树高
int BTreeHeight(BTNode* root)
{
	if (root == NULL)
		return 0;
	int LeftHeit = BTreeHeight(root->left);
	int RightHeit = BTreeHeight(root->right);
	return LeftHeit > RightHeit ? LeftHeit + 1 : RightHeit + 1;
}

//第K层的节点数量
int BTreeLevelKSize(BTNode* root, int k)
{
	assert(k > 0);
	if (root == NULL)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}
	return BTreeLevelKSize(root->left, k - 1) + BTreeLevelKSize(root->right, k - 1);
}

4.4 二叉树基础练习

1.. - 力扣(LeetCode)

2.. - 力扣(LeetCode)

3.. - 力扣(LeetCode)

4.. - 力扣(LeetCode)

4.5 二叉树的创建和销毁

// 通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树
BTNode* CreateTree(char* a, int *pi)
{
    if(a[*pi]=='#')
    {
        (*pi)++;
        return NULL;
    }
    BTNode* root = (BTNode*)malloc(sizeof(BTNode));
    root->data = a[(*pi)++];
    root->left = CreateTree(a,pi);
    root->right = CreateTree(a,pi);
    return root;
}
// 二叉树销毁
void BinaryTreeDestory(BTNode** root)
{
	assert(root);
	if (*root == NULL)
	{
		return;
	}
	BinaryTreeDestory(&((*root)->left));
	BinaryTreeDestory(&((*root)->right));
	free(*root);
	*root = NULL;
}
// 判断二叉树是否是完全二叉树
bool BinaryTreeComplete(BTNode* root)
{
	if (root == NULL)
		return true;
	Queue q;
	QueueInit(&q);
	QueuePush(&q, root);
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		if (front == NULL)
			break;
		QueuePop(&q);
		QueuePush(&q, front->left);
		QueuePush(&q, front->right);
	}
	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		if (front != NULL)
			return false;
		QueuePop(&q);
	}
	return true;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值