1.什么是深度学习?
深度学习是一种基于神经网络的学习方法。和传统的机器学习方法相比,深度学习模型一般需要更丰富的数据、更强大的计算资源,同时也能达到更高的准确率。目前,深度学习方法被广泛应用于计算机视觉、自然语言处理、强化学习等领域。
2.深度学习的应用
图像识别:深度学习特别擅长处理图像数据,常用于自动识别和分类图片中的对象。它在医疗影像分析、面部识别以及自动驾驶汽车的视觉系统中发挥着重要作用。
自然语言处理(NLP):深度学习使计算机能够理解和生成人类语言。应用包括机器翻译、情感分析、文本摘要以及聊天机器人等。
语音识别:深度学习技术也被用于语音识别系统,如智能助手和语音转文本服务,提高了语音到文本转换的准确性和效率。
推荐系统:深度学习能够分析用户的行为模式,并预测他们可能感兴趣的产品或内容,从而在电子商务和内容提供平台上提供个性化推荐。
自动驾驶汽车:深度学习帮助自动驾驶汽车理解周围环境,包括行人检测、交通标志识别和决策制定过程。
医疗保健:在医疗保健领域,深度学习被用于疾病诊断、药物发现、患者监护以及医疗影像分析等方面。
欺诈检测:金融机构利用深度学习模型来识别欺诈行为,例如信用卡欺诈和保险诈骗等。
游戏:在游戏领域,深度学习被用于增强人工智能的游戏体验,如非玩家角色(NPC)的行为建模和游戏内决策制定。
3.计算机视觉定义
计算机视觉是一门研究如何使机器“看”的科学,涉及计算机如何从数字图像或视频中获得高级理解。形象地说,即通过给计算机安装上眼睛(照相机)和大脑(算法),让计算机能够感知环境。以代替人眼对目标进行识别、跟踪和测量等操作,并对图像进行进一步的处理,使图像更适合人眼观察或传入仪器。计算机视觉既是工程领域,也是科学领域中的一个富有挑战性重要研究领域。作为一门综合性的学科,计算机视觉已经吸引了来自各个学科的研究者参加到对它的研究之中。其中包括计算机科学和工程、信号处理、物理学、应用数学和统计学、神经生理学和认知科学等学科。
4.计算机视觉的基本任务
计算机视觉的基本任务包含图像处理、模武识别或图像识别、景物分析、图像理解筹。除了图像处理和模式识别之外,它还包括空间形状的描述,几何建模以及认识过程、实现图像理解是计算机视觉的终极目标。
5.计算机视觉传统算法的5个步骤
特征感知,图像预处理,特征提取,特征筛选,推理预测与识别。
6.计算机视觉传统算法的缺点以及成功例子
缺点:缺乏对特征的重视;图像特征提取需要人力;依赖特征算子。
成功例子:指纹识别算法;基于Haar的人脸检测算法;基于HoG特征的物体检测。
7.计算机视觉的主要应用
医疗行业:计算机视觉技术在医疗领域的应用包括辅助诊断、图像重建、病变检测等。例如,通过分析医疗影像资料,可以帮助医生更快地识别疾病特征,提高诊断的准确性和效率。
零售业:在零售行业中,计算机视觉可以用于智能货架监控、顾客行为分析、自动结账系统等,以此来优化库存管理和提升顾客购物体验。
安防领域:计算机视觉技术在安防行业的应用包括人脸识别、异常行为检测、车辆识别等,这些都是为了提高安全性和防范潜在的威胁。
自动驾驶:自动驾驶汽车利用计算机视觉来解释传感器数据,进行对象检测、分类和追踪,以及场景理解,确保车辆能够安全导航。
制造业:在制造业中,计算机视觉被用于产品质量控制、自动化装配线、机器人引导等多个环节,提高了生产效率和质量控制的精确度。
农业:计算机视觉技术在农业中的应用包括作物病虫害检测、土地分析、收割机器人等,帮助提高农作物产量和管理效率。
8.自然语言处理的基本问题
(1)自然语言处理主要研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,其主要任务包括:语言建模:计算一个句子在一个语言中出现的概率。
中文分词:将中文句子恰当地切分为单个的词。
句法分析:通过明确句子内两个或多个词的关系来了解整个句子的结构。最终句法分析的结果是一棵句法树。
(2)自然语言处理主要研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,其主要任务包括:情感分析:给出一个句子,判断这个句子表达的情感。
机器翻译:最常见的是把源语言的一个句子翻译成目标语言的一个句子,最终预测出来的整个目标语言句子必须与给定的源语言句子具有完全相同的含义。
阅读理解:有许多形式。有时候是输入一个段落,一个问题,生成一个回答,或者在原文中标定一个范围作为回答,有时候是输出一个分类。
(3)自然语言处理主要研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,其主要任务包括:语言生成:通过模型和算法,使计算机能够生成符合语法和语义规则的人类语言。
信息检索:通过分析和索引大量的文本数据,使计算机能够快速准确地检索相关信息。
语言理解:通过分析文本和语音,使计算机能够理解人类语言的意义和目的。
9.监督学习与非非监督学习的定义
监督学习是通过带有标签或对应结果的样本训练得到一个最优模型,再利用这个模型将所有输入映射为相应输出, 以实现分类。
非监督学习是在样本的标签未知的情况下,根据样本之间的相似性对样本集进行聚类,使类内差距最小化,学习出分类器。
10.强化学习的4个因素
智能体;环境;行动;反馈。