13. LCR 091. 粉刷房子
题目:
假如有一排房子,共
n
个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个
n x 3
的正整数矩阵costs
来表示的。例如,
costs[0][0]
表示第 0 号房子粉刷成红色的成本花费;costs[1][2]
表示第 1 号房子粉刷成绿色的花费,以此类推。请计算出粉刷完所有房子最少的花费成本。
题目链接
文字分析
审题:
相邻房子颜色不一
代码
class Solution { public: int minCost(vector<vector<int>>& costs) { int n = costs.size(); vector<int> e(n); vector<int> f(n); vector<int> g(n); e[0] = costs[0][0]; f[0] = costs[0][1]; g[0] = costs[0][2]; for(int i = 1;i < n;i++) { e[i] = costs[i][0] + min(f[i - 1],g[i - 1]); f[i] = costs[i][1] + min(e[i - 1],g[i - 1]); g[i] = costs[i][2] + min(e[i - 1],f[i - 1]); } int Min = e[n - 1]; Min = min(Min,f[n - 1]); Min = min(Min,g[n - 1]); return Min; } };
14. 309. 买股票的最佳时期含冷冻期
题目:
给定一个整数数组
prices
,其中第prices[i]
表示第i
天的股票价格 。设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
题目链接
文字分析
代码
class Solution { public: int maxProfit(vector<int>& prices) { int n = prices.size(); vector<vector<int>> dp(n,vector<int>(3)); dp[0][0] = prices[0] * -1; dp[0][1] = 0; dp[0][2] = 0; for(int i = 1;i < n;i++) { dp[i][0] = max(dp[i - 1][0],dp[i - 1][1] - prices[i]); dp[i][2] = dp[i - 1][0] + prices[i]; dp[i][1] = max(dp[i - 1][2],dp[i - 1][1]); } int Max = dp[n - 1][0]; Max = max(Max,dp[n - 1][1]); Max = max(Max,dp[n - 1][2]); return Max; } };
15. 714. 买股票的最佳时期含手术费
题目:
给定一个整数数组
prices
,其中prices[i]
表示第i
天的股票价格 ;整数fee
代表了交易股票的手续费用。你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。给你一个整数数组
nums
,你可以对它进行一些操作。每次操作中,选择任意一个
nums[i]
,删除它并获得nums[i]
的点数。之后,你必须删除 所有 等于nums[i] - 1
和nums[i] + 1
的元素。开始你拥有
0
个点数。返回你能通过这些操作获得的最大点数。
题目链接
文字分析
审题:
每卖出一次股票后,还要减掉 fee
代码
class Solution { public: int maxProfit(vector<int>& prices, int fee) { int n = prices.size(); vector<int> dp1(n); vector<int> dp2(n); dp1[0] = prices[0] * -1; dp2[0] = 0; for(int i = 1;i < n;i++) { dp1[i] = max(dp1[i - 1],dp2[i - 1] - prices[i]); dp2[i] = max(dp2[i - 1],dp1[i - 1] + prices[i] - fee); } return max(dp1[n - 1],dp2[n - 1]); } };