合并果子 / [USACO06NOV] Fence Repair G

题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n−1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 1 ,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有 3 种果子,数目依次为 1 , 2 , 9 。可以先将 1 、 2 堆合并,新堆数目为 3 ,耗费体力为 3 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 12 ,耗费体力为 12 。所以多多总共耗费体力 3+12=15 。可以证明 15 为最小的体力耗费值。

输入格式

共两行。
第一行是一个整数 n(1≤n≤10000) ,表示果子的种类数。

第二行包含 n 个整数,用空格分隔,第 i 个整数 ai​(1≤ai​≤20000) 是第 i 种果子的数目。

输出格式

一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2^31 。

输入输出样例

输入 #1复制

3 
1 2 9 

输出 #1复制

15

说明/提示

对于 30% 的数据,保证有n≤1000:

对于 50% 的数据,保证有 n≤5000;

对于全部的数据,保证有 n≤10000。

#include <iostream>
#include <queue>

using namespace std;

int main() {
    int n;
    cin >> n;

    priority_queue<int, vector<int>, greater<int>> pq; // 创建一个最小堆

    // 将果子数目放入最小堆中
    for (int i = 0; i < n; i++) {
        int num;
        cin >> num;
        pq.push(num);
    }

    int totalCost = 0;

    // 从最小堆中取出两个最小值进行合并,并将合并后的结果放回堆中,直到堆中只剩下一个元素为止
    while (pq.size() > 1) {
        int a = pq.top();  // 取出堆顶元素
        pq.pop();  // 移除堆顶元素
        int b = pq.top();  // 取出新的堆顶元素
        pq.pop();  // 移除新的堆顶元素
        int newPile = a + b;  // 合并两堆果子
        totalCost += newPile;  // 更新总体力消耗
        pq.push(newPile);  // 将合并后的结果放回堆中
    }

    cout << totalCost;  // 输出合并总体力消耗

    return 0;
}

priority_queue是C++ STL中的一个容器适配器,它提供了基于优先级的元素访问,通常用于实现优先队列。priority_queue中的元素按照一定的顺序进行排列,并且在访问时具有反向顺序,即最重要的(最大或最小)元素总是位于队列的前面。

以下是priority_queue的基本用法介绍:

  1. 包含头文件
#include <queue>
  1. 创建priority_queue
priority_queue<int> pq;  // 创建一个默认的最大堆
  1. 创建最小堆
priority_queue<int, vector<int>, greater<int>> minPq;  // 创建一个最小堆
  1. 插入元素
pq.push(5);  // 向最大堆中插入元素
minPq.push(3);  // 向最小堆中插入元素
  1. 获取堆顶元素
int topElement = pq.top();  // 获取最大堆的堆顶元素
int minTopElement = minPq.top();  // 获取最小堆的堆顶元素
  1. 弹出堆顶元素
pq.pop();  // 弹出最大堆的堆顶元素
minPq.pop();  // 弹出最小堆的堆顶元素
  1. 获取堆的大小
int size = pq.size();  // 获取最大堆的大小
int minSize = minPq.size();  // 获取最小堆的大小

priority_queue的底层实现通常使用堆(heap)数据结构,因此在插入、删除元素时具有较好的时间复杂度。同时,通过使用不同的比较函数可以实现最大堆和最小堆,从而满足不同的业务需求

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值