C++ | 差分与前缀和

差分与前缀和是一对互逆的操作,常用于处理区间问题。差分法解决区间加减问题,前缀和解决区间求和问题。

差分

当某一个数组要在很多不确定的区间,加上同一个数,如果对每个都进行加法操作的话。那么时间复杂度会是O(mn)。【数组长度m 操作次数n】

这时可以采用差分法,将数组拆分,构造出一个新的拆分数组,通过对数组区间的端点进行加减操作,最后将数组合并,就能完成原来的操作。

特点

1)对区间的加减操作->对端点的操作

2)时间复杂度O(n)【实际上是O(m+n)】。

3) 用于维护区间的增减,但不能维护乘除。

4)差分后的序列比原来的数组序列多一个数。

原理

根据这一特性,对差分后的数组进行 b[L]+=x; b[R]-=x 就能转化为 区间a[L,R-1]+x 

模板

用两个数组

//读入原始数据n,m,a
cin>>n>>m;
原始数组 a[]
差分数组 b[]

for(int i=1;i<=n;i++) cin>>a[i];

//差分
for(int i=1;i<=n;i++) b[i]=a[i]-a[i-1];

//m次区间操作
while(m--)
{
    cin>>l>>r>>value;
    
    b[l]+=value;
    b[r+1]-=value;
}

//前缀和还原
for(int i=1;i<=n;i++) a[i]=b[i]+a[i-1];

只用一个数组

减少空间占用 

//读入原始数据n,m,a
cin>>n>>m;
原始数组 a[]

for(int i=1;i<=n;i++) cin>>a[i];

//差分
for(int i=n;i>=2;i--) a[i]=a[i]-a[i-1];

//m次区间操作
while(m--)
{
    cin>>l>>r>>value;
    
    a[l]+=value;
    a[r+1]-=value;
}

//前缀和还原
for(int i=2;i<=n;i++) a[i]=a[i]+a[i-1];

题目

大学里的树木要打药

模板题

#include<bits/stdc++.h>
using namespace std;
#define maxsize 1000010
int a[maxsize],b[maxsize];

int main()
{
	int n,m;
	cin>>n>>m;
	
	//初始都是0 不用循环求b
	
	while(m--)
	{
		int l,r,value;
		cin>>l>>r>>value;	
		
		l++; r++;  //题目中的编号从0开始
		
		b[l]+=value;
		b[r+1]-=value;
	}
	
	//还原
    int sum=0;
	for(int i=1;i<=n;i++){
    {    
        a[i]=b[i]+a[i-1];
        sum+=a[i];	
    }	
	
	cout<<sum;
	return 0;
}

前缀和

前缀和就是某序列的前n项和。当对于某一数组区间进行多次询问,求区间和时,采用前缀和数组,就可以把对区间的访问转化为对区间端点的访问。

特点

1)对区间的求和操作->对端点值的减法操作

2)时间复杂度O(n)【实际上是O(m+n)】。

3) 数组存放要从1开始。

4)前缀和的序列比原来的数组序列多一个数。

基本思路

sum[i]=a[i]+sum[i-1]

前缀和数组 sum[R]-sum[L] 就能转化为 区间a[L+1,R]内a[i]的和

int a[];
int max[];

cin>>n>>m;

for(int i=0;i<n;i++)
{
    cin>>a[i];
    sum[i]=sum[i-1]+a[i];
}

输入m个区间,计算结果

int L,R;
while(M--)
{
    cin>>L>>R;
    
    int ans=sum[R]-sum[L-1];
    cout<<ans;
}

题目

大学里的树木要维护

模板题

#include<bits/stdc++.h>
using namespace std;
#define maxsize 100010

int a[maxsize],sum[maxsize],ans[maxsize];

int main()
{
	int n,m;
	cin>>n>>m;
	
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		sum[i]=sum[i-1]+a[i];
	}
	
	int j=0;
	while(m--)
	{
		int L,R;
		cin>>L>>R;
		
		ans[j]=sum[R]-sum[L-1];
		j++;
	}
	
	for(int i=0;i<j;i++) cout<<ans[i]<<endl;
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值