numpy
文章平均质量分 52
皆过客,揽星河
短短几年,变化很大。
终有疾风起人生不言弃,挺过来,平芜尽处是春山。加油吧
展开
-
numpy复习并熟悉操作数组的行和列,有题目且配有解答
【代码】numpy复习并熟悉操作数组的行和列,有题目且配有解答。原创 2024-10-28 16:09:36 · 113 阅读 · 0 评论 -
Python面向对象,实现图片处理案例,支持:高斯模糊、Canny边缘检测、反转边缘图像、生成手绘效果、调亮度......等等
命名为img1.jpg, 放在项目下新建文件夹images下。app.py源码如下。原创 2024-10-28 10:51:34 · 427 阅读 · 0 评论 -
Python的NumPy库中,广播(broadcasting)是一种强大的机制
在Python的NumPy库中,广播(broadcasting)是一种强大的机制,它允许对不同形状的数组进行算术运算。广播使得较小的数组能够与较大的数组进行兼容操作,而无需显式地复制数据。原创 2024-10-28 09:00:07 · 328 阅读 · 0 评论 -
numpy矩阵相关操作
所谓的广播机制就是当2个不同维度的数组进行加减的时候,将把维度小的数组自动填充数组变成维度大且维度数组相同的数组,然后再进行计算,在填充过程中会有已有数据进行填充。n1.sort(),这个时候n1就是已经排好序的数组,可以直接使用。np.sort(n1) 如果要使用,就需要用一个变量接住。2)两个数组的操作(每个数组中对应的元素做操作)不改变原数组的排序,会占用额外的内存空间。3)线性代数中的矩阵操作。1)单个数组元素的操作。直接改变数组元素的排序。原创 2024-07-23 20:40:26 · 393 阅读 · 0 评论 -
numpy库中的级联以及聚合函数
可通过axis参数改变级联的方向。与级联类似,三个函数完成切分工作。级联的数组维度必须相同。原创 2024-07-21 22:56:44 · 429 阅读 · 0 评论 -
ndarray的属性与基本操作之切片以及数组变形
注意:在使用-1来自动填充位置的时候,reshape的位置参数括号中-1有且只能出现1次,不然机器无法自动给出维度,因为目前机器没有自己的意识和思想。(4) dtype: 元素类型(8位表示1个字节)(2) shape: 形状(各维度的长度)(3) size: 总长度(总的数据量)(1) ndim: 维度。原创 2024-07-18 22:32:33 · 347 阅读 · 0 评论 -
Python数据可视化之numpy的11个常用的创建数组的函数
在处理成千上万的数据时,Python的1维列表已经不适合来对数据进行处理,效率会很慢,所以numpy就诞生了,他可以将列表变成数组,而数组可以是1维、2维、3维甚至更高纬度,可用于存储和处理大型的矩阵,此外numpy提供了大量的数学函数,包括数学、逻辑、形态操作、排序、选择,输出和输入、离散型傅立叶变换、基本线性代数,统计运算和随机模拟等等。标准正态分布又称为u分布,是以0为均值、以1为标准差的正态分布,记为N(0, 1) 标准正态分布,在0左右出现的概率最大,越远离出现的概率越小。3)str: 字符串。原创 2024-07-18 12:59:01 · 1281 阅读 · 0 评论