- 博客(5)
- 收藏
- 关注
原创 pytorch学习笔记二
1.卷积层nn.Conv2d(输入的通道数,输出的通道数,卷积核大小,步长,填充)作用:改变通道数,获取关键的特征,使用padding可以维持图像的原大小。4.线性层nn.Linear(输入的特征数,输出的特征数)2.池化层nn.Maxpool2d(卷积核大小)卷积层、池化层、激活函数、线性层(全连接层)如果要保存需要导入或者本文件代码中有网络类。作用:获取图像特征,压缩图像,减少计算。方法一:既保存网络结构又保存训练权重。作用:容器,用于简化神经网络书写。作用:将张量展平成一维。方法二:只保存训练权重。
2025-03-22 19:25:07
272
原创 如何导出RT-DETR训练后的模型
找到tools/export_onnx文件,修改-c default=“配置文件路径”,修改-g default=“训练出的pth文件”#如何使用导出的模型进行训练##导出onnx模型#
2025-03-17 21:32:53
141
原创 如何使用autodl云服务器(miniconda)训练模型
5.记得将模型的输出文件路径改为数据盘存储路径。执行命令查看配置的路径是否在文件内容中。执行以下命令设置将虚拟环境安装到。1.设置虚拟环境安装到数据盘上。#系统盘内存不足情况#4.安装环境依赖即可。
2025-03-17 21:18:06
390
原创 RT-DETR pytorch版本如何训练和验证
2.将img_folder和ann_file下的路径修改为自己数据集的路径和json路径。3.在windows系统下需要将num_workers的值设置为0.(记得在运行前,将val中的batch_size设置为1。1.将yolo形式的标签转为coco格式。里面,将类别修改为自己的类别。#如何验证模型效果#
2025-03-17 21:07:57
375
空空如也
前端https无法访问后端http服务器
2025-06-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人