题目要求
从任一给定的正整数 n 出发,将其每一位数字相乘,记得到的乘积为 n1。以此类推,令 ni+1 为 ni 的各位数字的乘积,直到最后得到一个个位数 nm,则 m 就称为 n 的持续性。例如 679 的持续性就是 5,因为我们从 679 开始,得到 6×7×9=378,随后得到 3×7×8=168、1×6×8=48、4×8=32,最后得到 3×2=6,一共用了 5 步。
本题就请你编写程序,找出任一给定区间内持续性最长的整数。
输入描述
输入在一行中给出两个正整数 a 和 b,10≤a≤b≤10^9,且(b−a)<10^3,a,b为给定区间的两个端点。
输出描述
首先在第一行输出区间[a,b] 内整数最长的持续性。随后在第二行中输出持续性最长的整数。如果这样的整数不唯一,则按照递增序输出,数字间以 1 个空格分隔,行首尾不得有多余空格。
样例输入
500 700
样例输出
5
679 688 697
代码
#include <stdio.h>
#include <stdlib.h>
#define N 1001
/* run this program using the console pauser or add your own getch, system("pause") or input loop */
int Product(long long a)
{
long long n = 1, flag = 0;
while(a)
{
n *= a % 10;
a /= 10;
if(a == 0)
flag++;
if(a == 0 && n / 10 != 0)
{
a = n;
n = 1;
}
}
return flag;
}
int main(int argc, char *argv[]) {
long long a, b, i, j = 0, max = 0;
scanf("%lld%lld", &a, &b);
int num[N] = {0};
for(i = a; i <= b; i ++)
num[j++] = Product(i);
for(i = 0; i < j; i ++)
if(num[i] > max)
max = num[i];
printf("%d\n", max);
for(i = 0; i < j; i ++)
if(num[i] == max)
printf("%lld ", a + i);
printf("\n");
return 0;
}
分析
在函数Product中可以实现让传进来的数字在没有仅剩个位数之前使每一个位置上的数字相乘,这需要用n/10来判断数位问题,还需要让a = n来实现循环相乘;
在主函数中需要准备一个数组存储代表数字持续性的值。
注意
flag 在函数中是代表整数持续性的值,在计算持续性时,要在确保a == 0后再将flag ++,当a == 0时才是一次各个数位上的数字相乘完毕的标志。