509. 斐波那契数 题目链接
解题方法
> 动态规划五部曲:
1.确定dp数组及下标含义:
dp[i]表示第i个数的斐波那契数值为dp[i]
2.确定递推公式:
dp[i]=dp[i-1]+dp[i-2];
3.dp数组如何初始化
dp[0]=0;dp[1]=1;
4.确定遍历顺序:
需要用到前两个数,所以是从前往后遍历
5.举例推导dp数组:
当n=10
0,1,,1,2,3,5,8,13,21,34,55
Code
class Solution {
public:
int fib(int n) {
if(n<=1)return n;
vector<int>dp(n+1);
dp[0]=0;
dp[1]=1;
for(int i=2;i<=n;i++)
{
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
};
复杂度
时间复杂度:
O(n)
空间复杂度:
O(n)
70. 爬楼梯 题目链接
解题方法
1.确定dp[i]及下标含义:dp[i]表示爬楼梯的方法数,第i层楼梯
2.确定递推公式dp[i]=dp[i-1]+dp[i-2];
3.dp数组如何初始化 dp[1]=1;dp[2]=2;
4.确定遍历顺序:从前往后遍历
5.举例推导dp数组 n=5:1,2,3,5,8,dp[5]=8
Code
class Solution {
public:
int climbStairs(int n) {
if(n<=1)return n;
vector<int>dp(n+1);
dp[1]=1;
dp[2]=2;
for(int i=3;i<=n;i++)
{
dp[i]=dp[i-1]+dp[i-2];
}
return dp[n];
}
};
复杂度
时间复杂度:
O(n)
空间复杂度:
O(n)
746. 使用最小花费爬楼梯 题目链接
解题方法
1.确定dp数组及下标含义:到达第i台阶所花费的体力是dp[i]
2.确定递推公式:dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])
3.dp数组初始化:dp[0]=0;dp[1]=0;
4.确定遍历顺序:从前往后遍历
5.举例推导dp数组
Code
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int>dp(cost.size()+1);
dp[0]=0;
dp[1]=0;
for(int i=2;i<=cost.size();i++)
{
dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
}
return dp[cost.size()];
}
};
复杂度
时间复杂度:
O(n)
空间复杂度:
O(n)