自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 YOLOv4

3. SAM:YOLOv4使用了SAM(Spatial Attention Module)模块,用于学习特征图中的空间注意力,增强了目标的表征能力。5. 数据增强:YOLOv4采用了一系列数据增强技术,如Mosaic数据增强、MixUp数据增强等,提升了模型的鲁棒性和泛化能力。需要注意的是,使用YOLOv4进行目标检测需要一定的计算资源和训练时间,同时需要足够的标注数据来训练准确的模型。4. 精细检测:YOLOv4引入了精细检测策略,通过在不同尺度上进行多次检测,提高了小目标的检测精度。

2023-11-23 09:23:07 25

原创 YOLOV3

除了上述步骤,Yolov3还引入了一些改进的技术,包括多尺度预测、特征金字塔网络、细粒度特征融合等,以提高检测精度和目标定位能力。需要注意的是,Yolov3相比于Yolov2在网络结构和训练方法上有所改进,因此在使用时需要参考相应的论文和开源实现,以确保正确使用和理解算法。相比于Yolov2,Yolov3在检测精度和速度方面都有所提升,成为了目标检测领域的重要算法之一。将图像输入到模型中,模型会输出检测到的目标框和对应的类别。1. 数据准备:首先,需要准备训练数据集,包括带有标注框的图像和对应的类别标签。

2023-11-20 08:48:13 27 1

原创 YOLOV1和YOLOV2

除了上述步骤,Yolov2还引入了一些改进的技术,包括多尺度推理、Anchor Boxes、特征图的细粒度预测等,以提高检测精度和目标定位能力。需要注意的是,Yolov2相比于Yolov1在网络结构和训练方法上有所改进,因此在使用时需要参考相应的论文和开源实现,以确保正确使用和理解算法。1. 数据准备:首先,需要准备训练数据集,包括带有标注框的图像和对应的类别标签。确保数据集的标注准确且完整。1. 数据准备:和Yolov1一样,首先需要准备训练数据集,包括带有标注框的图像和对应的类别标签。

2023-11-20 08:46:32 32 1

原创 卷积神经网络

CNN的核心思想是通过卷积层、池化层和全连接层来提取和学习数据的特征,从而实现对数据的分类和识别。2. 激活函数(Activation Function):在卷积层之后,通常会应用一个非线性的激活函数,如ReLU(Rectified Linear Unit),用于引入非线性变换,增加模型的表达能力。6. 反向传播(Backpropagation):通过反向传播算法,根据损失函数的梯度信息,更新模型中的参数,使得损失函数的值逐渐减小,从而提高模型的预测准确率。

2023-11-06 13:47:14 28 1

原创 多层感知机

具体步骤如下: - 计算输出层的误差:根据损失函数的导数和输出层的激活函数的导数,计算输出层的误差项。- 逐层向前计算隐藏层的误差项:根据当前层的误差项和下一层的权重,计算当前层的误差项。3. 计算损失函数:将网络的输出结果与真实标签进行比较,计算损失函数的值,常用的损失函数包括均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等。这就是多层感知机算法的基本步骤,通过反复迭代优化网络参数,使得网络能够学习到输入样本的特征,并进行准确的预测或分类。

2023-11-03 14:21:35 44

原创 线性回归与回归

回归分析可以帮助我们理解变量之间的关系,预测未来的结果,以及评估不同变量对因变量的影响程度。总而言之,线性回归是回归分析中最常用的方法之一,它通过拟合一条直线或超平面来描述自变量和因变量之间的线性关系。其中,线性回归是回归分析中最常用的一种方法,它假设自变量和因变量之间存在线性关系,并试图通过拟合一条直线或超平面来描述这种关系。总而言之,回归是一种统计学方法,用于研究变量之间的关系,并进行预测和推断。线性回归是回归分析中最常用的一种方法,用于建立自变量和因变量之间的线性关系模型。

2023-11-02 14:21:39 50

原创 深度学习的总结

4.训练和优化:深度学习模型的训练是通过最小化损失函数来实现的。此外,正则化、批量归一化和dropout等技术可以提高模型的泛化能力和鲁棒性。6.挑战和未来发展:深度学习仍然面临一些挑战,如数据不足、模型的可解释性和计算资源的需求。未来的发展方向包括改进模型的效率和鲁棒性,结合深度学习与其他技术的融合,如强化学习和迁移学习。它在人工智能领域的应用前景广阔,将继续推动科学技术的进步和社会的发展。深度学习是一种机器学习方法,通过多层神经网络模型来学习和提取数据的特征,从而实现对复杂数据的分析和预测。

2023-11-01 16:37:17 36 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除