1. 背景介绍
1.1 问题由来
在当今物流仓储领域,自动化和智能化已经成为发展的大趋势。无人仓库系统作为这一趋势的重要代表,已经成为推动物流仓储产业变革的关键技术之一。无人仓库不仅能够大幅提升仓储效率、降低人力成本,还能实现仓储系统的智能化管理,提高货物存储和分拣的准确性和安全性。
然而,无人仓库系统的核心在于智能化的货物分拣和路径规划。传统的路径规划方法通常依赖于人工经验或简单的启发式算法,无法充分利用仓库内部的实时环境信息,无法对动态变化的环境做出快速反应。近年来,随着强化学习技术的发展,深度强化学习(Deep Reinforcement Learning, DRL)成为了解决无人仓库路径规划问题的有力工具。
1.2 问题核心关键点
在无人仓库路径规划中,核心问题可以归结为:
- 环境建模:如何构建一个能够准确反映无人仓库内部动态环境的模型,包括货物位置、仓库布局、路径宽度、障碍物等关键因素。
- 策略学习:如何设计一个有效的策略函数,使得机器人在特定环境下能够优化路径规划,提升货物分拣效率。
- 探索与利用:如何在保证路径规划效果的同时,避免机器人在已有路径上过度重复&