1. 背景介绍
人工智能(AI)自诞生以来,经历了三个主要的发展阶段:从早期基于符号逻辑的专家系统,到20世纪90年代基于统计学习的机器学习,再到21世纪10年代起兴起的深度学习。每个阶段都伴随着技术突破和应用范式的变革,深刻影响了信息时代的面貌。在当前AI热潮中,生成对抗网络(GAN)和大型语言模型(LLM)为代表的人工智能生成内容(AIGC)技术,正逐步改变娱乐、教育、商务等各个领域的应用形态。本文旨在通过回顾AI科学发展史,厘清各个发展阶段的核心概念与技术,并展望未来AIGC技术的发展方向与挑战。
2. 核心概念与联系
2.1 核心概念概述
专家系统(Expert System):早期的AI模型,基于知识表示和推理规则,模拟专家决策过程,用于问题求解和决策支持。
机器学习(Machine Learning):通过数据训练模型,自动提取特征,学习输入与输出之间的映射关系,用于分类、回归、聚类等任务。
深度学习(Deep Learning)