揭秘 AIGC 领域 AI 作曲的核心算法

揭秘 AIGC 领域 AI 作曲的核心算法:从音符到旋律的魔法工厂

关键词:AI作曲、AIGC、生成模型、音乐表征、RNN、Transformer、GAN

摘要:你是否听过AI生成的音乐?从流行歌曲到古典乐章,AI正用代码“创作”出动人旋律。本文将带你走进AI作曲的核心世界,用“做蛋糕”的故事类比复杂算法,拆解RNN、Transformer、GAN等核心技术如何将数学公式转化为跳动的音符。无论你是音乐爱好者还是技术极客,读完都能理解AI作曲的“魔法原理”。


背景介绍

目的和范围

AI作曲是AIGC(人工智能生成内容)的重要分支,本文将聚焦其核心算法原理,覆盖从音乐数据处理到模型生成的全流程,帮助读者理解“AI如何学会写歌”。

预期读者

  • 音乐爱好者:想了解AI如何辅助创作
  • 技术入门者:对生成模型感兴趣但害怕复杂公式
  • 开发者:希望用代码实现简单AI作曲

文档结构概述

本文从“蛋糕店的新学徒”故事切入,逐步讲解音乐数据的“原材料”(音乐表征)、“烹饪工具”(生成模型),再通过代码实战演示AI作曲的具体过程,最后探讨未来趋势。

术语表

  • MIDI:音乐设备数字接口(Musical Instrument Digital Interface),用数字信号记录音符、力度等信息(类比“乐谱的电子版”)。
  • 钢琴卷帘(Piano Roll):MIDI的可视化形式,横轴是时间,纵轴是钢琴键,色块表示音符(像“时间-音高的表格”)。
  • RNN(循环神经网络):能记住“过去”的神经网络(类比“会记歌词的歌手”)。
  • Transformer:用“注意力”聚焦关键信息的模型(类比“听音乐时自动抓住主歌的听众”)。
  • GAN(生成对抗网络):由“生成器”和“判别器”组成的“对抗训练”模型(类比“互相切磋的作曲家和乐评人”)。

核心概念与联系

故事引入:蛋糕店的新学徒——AI如何“学作曲”?

想象你开了一家“旋律蛋糕店”,客人想要定制一首“温暖、带点钢琴前奏的小甜歌”。过去你得自己翻乐谱、试和弦,现在店里来了个AI学徒:

  1. 学经验:AI先“读”了10000首经典歌曲的MIDI文件(像学徒背了10000份蛋糕配方);
  2. 找规律:它发现“C大调”的曲子常以“1-3-5”和弦开头(像学徒发现“草莓蛋糕”总用新鲜草莓);
  3. 做新蛋糕:根据规律,AI生成了一首“C大调、钢琴前奏、温暖风格”的新歌(像学徒用新草莓做了创新蛋糕)。

这个过程的关键,就是AI作曲的核心——用生成模型从音乐数据中学习规律,再生成新旋律

核心概念解释(像给小学生讲故事一样)

核心概念一:音乐表征——AI的“乐谱字典”

AI不会读纸质乐谱,它需要把音乐转换成自己能“看懂”的数字形式,这就是音乐表征。最常用的是MIDI和钢琴卷帘:

  • MIDI:就像给每个音符发“身份证”——记录音高(多高的音,比如“中央C”是60)、时长(弹多久,比如0.5秒)、力度(弹多用力,比如80/127)。
  • 钢琴卷帘:把MIDI画成表格,横轴是时间(每一格0.25秒),纵轴是钢琴键(从低音到高音)。如果某个时间格的某个琴键被按下,就涂一个色块(像“时间-音高的涂色本”)。

类比:音乐表征就像把蛋糕配方写成“面粉200g、糖50g、烤箱180℃”的数字步骤,AI看了就能“按方做蛋糕”。

核心概念二:生成模型——AI的“作曲大脑”

生成模型是AI的“作曲大脑”,它能从大量音乐数据中学习规律,然后“猜”出下一个音符。常见的有三种:

  • RNN(循环神经网络):像会“记歌词”的大脑。它每一步生成音符时,都会记住之前所有音符(比如前三个音是“1-3-5”,它会记住这个序列,然后预测第四个音可能是“1”或“6”)。
  • Transformer:像“抓重点”的听众。它生成音符时,不仅记住之前的音,还能“注意”到更重要的部分(比如主歌的旋律比伴奏更关键,就多关注主歌的历史音符)。
  • GAN(生成对抗网络):像“互相较劲”的两人组。一个“生成器”拼命写旋律,另一个“判别器”拼命挑毛病(“这旋律太老套!”),两人越斗越厉害,最后生成器能写出连判别器都辨不出真假的好旋律。
核心概念三:损失函数——AI的“纠错老师”

AI作曲不是一步到位的,它需要“纠错老师”指导。损失函数就是这个老师,它计算AI生成的旋律和真实旋律的差距(比如音高错了、节奏太乱),然后告诉模型“哪里需要改”。比如:

  • 如果真实旋律的下一个音是“6”,但AI猜成“7”,损失函数会说“音高错了,罚分!”;
  • 如果真实节奏是“四分音符”,但AI写成“八分音符”,损失函数会说“节奏错了,罚分!”。

类比:损失函数就像蛋糕店的质检表——“甜度不够扣1分,蛋糕太扁扣2分”,AI根据扣分调整配方。

核心概念之间的关系(用小学生能理解的比喻)

音乐表征、生成模型、损失函数就像“蛋糕三兄弟”:

  • **音乐表征(乐谱字典)**是原材料,生成模型(作曲大脑)是烤箱,损失函数(纠错老师)是温度计。
  • 没有乐谱字典(原材料),烤箱(生成模型)不知道该烤什么;没有温度计(损失函数),烤箱可能烤焦或没烤熟。

具体关系:

  • 音乐表征 ↔ 生成模型:生成模型需要“读”懂音乐表征(就像烤箱需要“读”懂蛋糕配方),才能学习规律。
  • 生成模型 ↔ 损失函数:生成模型生成旋律后,损失函数计算“多差”,然后指导模型调整参数(就像温度计告诉烤箱“温度高了,调低10℃”)。
  • 音乐表征 ↔ 损失函数:损失函数的计算依赖音乐表征的具体形式(比如用钢琴卷帘的话,损失函数会检查色块位置对不对)。

核心概念原理和架构的文本示意图

AI作曲的核心流程:

音乐数据(MIDI/钢琴卷帘) → 预处理(转数字矩阵) → 生成模型(RNN/Transformer/GAN) → 损失函数(计算误差) → 调整模型 → 生成新旋律(MIDI输出)

Mermaid 流程图

graph TD
    A[原始音乐数据] --> B[预处理:转钢琴卷帘矩阵]
    B --> C[生成模型(RNN/Transformer/GAN)]
    C --> D[生成候选旋律矩阵]
    D --> E[损失函数:对比真实数据计算误差]
    E --> F{误差是否足够小?}
    F -->|否| C[调整模型参数]
    F -->|是| G[输出MIDI旋律]

核心算法原理 & 具体操作步骤

AI作曲的核心是序列生成(按时间顺序生成音符),常用算法有RNN、Transformer、GAN,我们逐一拆解。

1. RNN(循环神经网络):会“记歌词”的作曲者

原理

RNN的核心是“记忆单元”,每个时间步的输出不仅依赖当前输入,还依赖之前的“记忆”。用公式表示:
h t = σ ( W h h h t − 1 + W x h x t + b h ) h_t = \sigma(W_{hh} h_{t-1} + W_{xh} x_t + b_h) ht=σ(Whhht1+Wxhxt+bh)
y t = σ ( W h y h t + b y ) y_t = \sigma(W_{hy} h_t + b_y) yt=σ(Whyht+by)
其中:

  • ( h_t ) 是t时刻的“记忆状态”(比如前t个音符的记忆);
  • ( x_t ) 是t时刻的输入(当前音符的钢琴卷帘向量);
  • ( y_t ) 是t时刻的输出(预测的下一个音符概率分布);
  • ( W ) 和 ( b ) 是模型参数(需要训练学习);
  • ( \sigma ) 是激活函数(比如Sigmoid或ReLU)。

类比:RNN像一个记歌词的小朋友,第一句记住“一闪一闪”,第二句就知道接“亮晶晶”,因为它记住了前一句的内容。

具体操作步骤(用Python代码示例)

我们用Keras实现一个简单的RNN来生成旋律:

import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense

# 步骤1:准备数据(假设已将MIDI转为钢琴卷帘矩阵)
# 钢琴卷帘矩阵形状:(样本数, 时间步, 音高数),这里音高数=128(钢琴88键+扩展)
# 例如:X是前3个时间步的音符,y是第4个时间步的音符
X = np.random.rand(1000, 3, 128)  # 1000个样本,每个样本3个时间步,128个音高
y = np.random.rand(1000, 128)     # 预测下一个时间步的128个音高概率

# 步骤2:搭建RNN模型(这里用LSTM,RNN的改进版,更擅长长记忆)
model = Sequential()
model.add(LSTM(128, input_shape=(3, 128), return_sequences=False))  # 记忆层
model.add(Dense(128, activation='softmax'))  # 输出每个音高的概率

# 步骤3:编译模型(损失函数用交叉熵,优化器用Adam)
model.compile(loss='categorical_crossentropy', optimizer='adam')

# 步骤4:训练模型(假设训练100轮)
model.fit(X, y, epochs=100, batch_size=32)

# 步骤5:生成旋律(输入初始3个时间步,预测第4个,然后循环)
def generate_melody(initial_sequence, length=10):
    melody = initial_sequence.copy()
    for _ in range(length):
        # 输入当前最后3个时间步
        input = melody[-3:].reshape(1, 3, 128)
        # 预测下一个音符概率
        next_note_probs = model.predict(input)[0]
        # 采样得到具体音高(这里用argmax选概率最高的)
        next_note = np.argmax(next_note_probs)
        # 生成新的钢琴卷帘向量(对应音高位置设为1)
        new_vector = np.zeros(128)
        new_vector[next_note] = 1
        melody = np.append(melody, [new_vector], axis=0)
    return melody

# 测试生成(初始序列是随机3个时间步)
initial = np.random.rand(3, 128)
generated = generate_melody(initial, length=10)

2. Transformer:用“注意力”抓重点的作曲者

原理

Transformer的核心是自注意力机制(Self-Attention),它能让模型在生成每个音符时,“关注”序列中最相关的部分(比如主歌的旋律比伴奏更重要)。自注意力的计算步骤:

  1. 给输入序列的每个元素(音符)生成三个向量:查询(Query)、键(Key)、值(Value);
  2. 计算每个Query与所有Key的相似度(点积),得到“注意力分数”(关注哪些位置);
  3. 用Softmax归一化分数,得到注意力权重;
  4. 用权重加权求和Value,得到输出(聚焦关键信息后的结果)。

数学公式:
Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left( \frac{QK^T}{\sqrt{d_k}} \right) V Attention(Q,K,V)=softmax(dk QKT)V
其中 ( d_k ) 是Key的维度(防止点积过大导致梯度消失)。

类比:听音乐时,你可能自动忽略背景噪音,只关注主唱的声音——Transformer的注意力机制就是这样“抓重点”。

具体操作步骤(关键代码片段)

Transformer在音乐生成中常用“因果注意力”(只能看左边的音符,不能看未来),以下是关键层的实现:

from tensorflow.keras.layers import Layer
import tensorflow as tf

class CausalSelfAttention(Layer):
    def __init__(self, d_model, num_heads):
        super().__init__()
        self.d_model = d_model
        self.num_heads = num_heads
        self.depth = d_model // num_heads

        # 生成Q、K、V的线性层
        self.wq = Dense(d_model)
        self.wk = Dense(d_model)
        self.wv = Dense(d_model)

        # 输出线性层
        self.dense = Dense(d_model)

    def split_heads(self, x, batch_size):
        # 将x拆分为(num_heads, depth)
        x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
        return tf.transpose(x, perm=[0, 2, 1, 3])

    def call(self, x):
        batch_size = tf.shape(x)[0]
        seq_len = tf.shape(x)[1]

        # 生成Q、K、V
        q = self.wq(x)  # (batch_size, seq_len, d_model)
        k = self.wk(x)
        v = self.wv(x)

        # 拆分多头
        q = self.split_heads(q, batch_size)  # (batch_size, num_heads, seq_len, depth)
        k = self.split_heads(k, batch_size)
        v = self.split_heads(v, batch_size)

        # 计算注意力分数(因果掩码:未来位置设为-∞,避免看未来)
        matmul_qk = tf.matmul(q, k, transpose_b=True)  # (batch_size, num_heads, seq_len, seq_len)
        dk = tf.cast(tf.shape(k)[-1], tf.float32)
        scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)

        # 因果掩码(下三角矩阵,上三角为-∞)
        mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
        scaled_attention_logits += (mask * -1e9)

        # Softmax归一化
        attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)  # (batch_size, num_heads, seq_len, seq_len)

        # 加权求和Value
        output = tf.matmul(attention_weights, v)  # (batch_size, num_heads, seq_len, depth)
        output = tf.transpose(output, perm=[0, 2, 1, 3])  # (batch_size, seq_len, num_heads, depth)
        output = tf.reshape(output, (batch_size, seq_len, self.d_model))  # (batch_size, seq_len, d_model)

        # 输出线性层
        output = self.dense(output)
        return output

3. GAN(生成对抗网络):互相“较劲”的作曲者与乐评人

原理

GAN由两个模型组成:

  • 生成器(Generator):输入随机噪声,生成假旋律(目标:让判别器误以为是真的);
  • 判别器(Discriminator):输入真/假旋律,输出“真”的概率(目标:准确区分真假)。

训练时,生成器和判别器“对抗训练”:生成器努力骗过判别器,判别器努力不被骗,最终生成器能生成以假乱真的旋律。

损失函数公式:
min ⁡ G max ⁡ D V ( D , G ) = E x ∼ p d a t a ( x ) [ log ⁡ D ( x ) ] + E z ∼ p z ( z ) [ log ⁡ ( 1 − D ( G ( z ) ) ) ] \min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))] GminDmaxV(D,G)=Expdata(x)[logD(x)]+Ezpz(z)[log(1D(G(z)))]
其中 ( x ) 是真实数据,( z ) 是随机噪声,( G(z) ) 是生成的假数据。

类比:生成器像造假钞的,判别器像验钞机。造假钞的想造得更真,验钞机想更准,最后假钞能骗过验钞机时,生成器就成功了。

具体操作步骤(简化代码)
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, LeakyReLU

# 生成器:输入噪声,输出假旋律(钢琴卷帘向量)
def build_generator(latent_dim, output_dim=128):
    model = Sequential()
    model.add(Dense(256, input_dim=latent_dim))
    model.add(LeakyReLU(alpha=0.2))
    model.add(Dense(512))
    model.add(LeakyReLU(alpha=0.2))
    model.add(Dense(output_dim, activation='sigmoid'))  # 输出0-1的概率(钢琴卷帘的“按下”概率)
    return model

# 判别器:输入旋律,输出“真”的概率
def build_discriminator(input_dim=128):
    model = Sequential()
    model.add(Dense(512, input_dim=input_dim))
    model.add(LeakyReLU(alpha=0.2))
    model.add(Dense(256))
    model.add(LeakyReLU(alpha=0.2))
    model.add(Dense(1, activation='sigmoid'))  # 输出0(假)到1(真)的概率
    model.compile(loss='binary_crossentropy', optimizer='adam')
    return model

# 组合GAN:生成器+冻结的判别器
def build_gan(generator, discriminator):
    discriminator.trainable = False  # 训练生成器时不更新判别器
    gan_input = Input(shape=(latent_dim,))
    x = generator(gan_input)
    gan_output = discriminator(x)
    model = Model(gan_input, gan_output)
    model.compile(loss='binary_crossentropy', optimizer='adam')
    return model

# 训练参数
latent_dim = 100  # 噪声维度
output_dim = 128  # 钢琴卷帘维度(128个音高)
epochs = 10000
batch_size = 64

# 构建模型
generator = build_generator(latent_dim, output_dim)
discriminator = build_discriminator(output_dim)
gan = build_gan(generator, discriminator)

# 加载真实数据(假设已预处理为钢琴卷帘矩阵)
real_data = np.load('piano_rolls.npy')  # 形状:(num_samples, output_dim)

# 训练循环
for epoch in range(epochs):
    # 训练判别器:用真数据和假数据
    # 真数据标签为1,假数据标签为0
    idx = np.random.randint(0, real_data.shape[0], batch_size)
    real_batch = real_data[idx]
    real_labels = np.ones((batch_size, 1)) * 0.9  # 标签平滑(避免过自信)

    noise = np.random.normal(0, 1, (batch_size, latent_dim))
    fake_batch = generator.predict(noise)
    fake_labels = np.zeros((batch_size, 1))

    # 训练判别器
    d_loss_real = discriminator.train_on_batch(real_batch, real_labels)
    d_loss_fake = discriminator.train_on_batch(fake_batch, fake_labels)
    d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)

    # 训练生成器:目标是让判别器将假数据判为1
    noise = np.random.normal(0, 1, (batch_size, latent_dim))
    valid_labels = np.ones((batch_size, 1))  # 生成器希望判别器认为假数据是真的
    g_loss = gan.train_on_batch(noise, valid_labels)

    # 打印进度
    if epoch % 100 == 0:
        print(f"Epoch {epoch}, D Loss: {d_loss}, G Loss: {g_loss}")

数学模型和公式 & 详细讲解 & 举例说明

RNN的状态转移

RNN的核心是状态 ( h_t ),它由前一状态 ( h_{t-1} ) 和当前输入 ( x_t ) 共同决定:
h t = tanh ⁡ ( W h h h t − 1 + W x h x t + b h ) h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t + b_h) ht=tanh(Whhht1+Wxhxt+bh)
这里用了双曲正切函数 ( \tanh )(输出范围[-1,1],防止数值爆炸)。

举例:假设 ( h_{t-1} = [0.5, -0.3] )(记住前一个音符的“开心”和“悲伤”程度),( x_t = [1, 0] )(当前音符是C大调),权重 ( W_{hh} = [[0.2, 0.1], [0.4, -0.1]] ),( W_{xh} = [[0.3, -0.2], [0.5, 0.1]] ),偏置 ( b_h = [0.1, -0.1] ),则:
W h h h t − 1 = [ 0.2 ∗ 0.5 + 0.1 ∗ ( − 0.3 ) , 0.4 ∗ 0.5 + ( − 0.1 ) ∗ ( − 0.3 ) ] = [ 0.1 − 0.03 , 0.2 + 0.03 ] = [ 0.07 , 0.23 ] W_{hh} h_{t-1} = [0.2*0.5 + 0.1*(-0.3), 0.4*0.5 + (-0.1)*(-0.3)] = [0.1 - 0.03, 0.2 + 0.03] = [0.07, 0.23] Whhht1=[0.20.5+0.1(0.3),0.40.5+(0.1)(0.3)]=[0.10.03,0.2+0.03]=[0.07,0.23]
W x h x t = [ 0.3 ∗ 1 + ( − 0.2 ) ∗ 0 , 0.5 ∗ 1 + 0.1 ∗ 0 ] = [ 0.3 , 0.5 ] W_{xh} x_t = [0.3*1 + (-0.2)*0, 0.5*1 + 0.1*0] = [0.3, 0.5] Wxhxt=[0.31+(0.2)0,0.51+0.10]=[0.3,0.5]
h t = tanh ⁡ ( [ 0.07 + 0.3 + 0.1 , 0.23 + 0.5 − 0.1 ] ) = tanh ⁡ ( [ 0.47 , 0.63 ] ) ≈ [ 0.44 , 0.56 ] h_t = \tanh([0.07 + 0.3 + 0.1, 0.23 + 0.5 - 0.1]) = \tanh([0.47, 0.63]) ≈ [0.44, 0.56] ht=tanh([0.07+0.3+0.1,0.23+0.50.1])=tanh([0.47,0.63])[0.44,0.56]
新的状态 ( h_t ) 综合了之前的记忆和当前输入,用于预测下一个音符。

Transformer的注意力分数

注意力分数衡量“当前位置”与“其他位置”的相关性。例如,生成第5个音符时,模型会计算它与前4个音符的相关性:

  • 如果前4个音符是“1-3-5-1”(C大三和弦),第5个音符可能与第1个(“1”)最相关(分数最高),因此注意力权重更大。

GAN的损失函数

生成器的目标是最小化 ( \log(1 - D(G(z))) )(让判别器更难发现假数据),判别器的目标是最大化 ( \log D(x) + \log(1 - D(G(z))) )(准确区分真假)。

举例:如果生成器生成了一个很假的旋律(D(G(z))=0.1),则 ( \log(1 - 0.1) ≈ -0.105 ),损失较小;如果生成器生成了一个很真的旋律(D(G(z))=0.9),则 ( \log(1 - 0.9) ≈ -2.303 ),损失变大——这说明生成器需要调整参数,让D(G(z))更接近1(即生成更真的旋律)。


项目实战:代码实际案例和详细解释说明

开发环境搭建

  1. 安装Python:推荐Python 3.8+(下载地址)。
  2. 安装依赖库
    pip install tensorflow==2.12.0  # 深度学习框架
    pip install music21==8.1.0       # 处理MIDI文件
    pip install numpy==1.24.3        # 数值计算
    pip install matplotlib==3.7.1    # 可视化钢琴卷帘
    
  3. 准备MIDI数据集:推荐使用Lakh MIDI数据集(包含17万+MIDI文件)。

源代码详细实现和代码解读

我们以RNN为例,实现一个从MIDI文件到生成旋律的完整流程。

步骤1:MIDI文件预处理(转钢琴卷帘)

music21库读取MIDI,提取音符并转换为钢琴卷帘矩阵。

from music21 import converter, note, chord
import numpy as np

def midi_to_piano_roll(midi_path, window_size=0.25):
    # 读取MIDI文件
    midi = converter.parse(midi_path)
    notes = []

    # 遍历所有音符和和弦
    for element in midi.flat.notes:
        if isinstance(element, note.Note):
            # 单音:记录音高和时长
            notes.append((element.pitch.midi, element.duration.quarterLength))
        elif isinstance(element, chord.Chord):
            # 和弦:每个音单独记录
            for pitch in element.pitches:
                notes.append((pitch.midi, element.duration.quarterLength))

    # 转换为时间序列(按0.25秒为一个时间步)
    max_time = sum(duration for _, duration in notes)
    num_steps = int(max_time / window_size) + 1
    piano_roll = np.zeros((num_steps, 128))  # 128个音高,0-127

    current_time = 0
    for (pitch, duration) in notes:
        start_step = int(current_time / window_size)
        end_step = int((current_time + duration) / window_size)
        # 在时间步[start_step, end_step)内标记音高
        for step in range(start_step, end_step):
            if step < num_steps:
                piano_roll[step, pitch] = 1  # 1表示该音高被按下
        current_time += duration

    return piano_roll

# 测试:读取一个MIDI文件并转换
piano_roll = midi_to_piano_roll('example.mid')
print(f"钢琴卷帘形状:{piano_roll.shape}")  # 输出:(时间步数, 128)
步骤2:构建RNN模型并训练
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout

# 准备训练数据:前n个时间步预测第n+1个时间步
def create_sequences(piano_roll, seq_length=3):
    X, y = [], []
    for i in range(len(piano_roll) - seq_length):
        X.append(piano_roll[i:i+seq_length])  # 输入:前seq_length个时间步
        y.append(piano_roll[i+seq_length])     # 输出:下一个时间步
    return np.array(X), np.array(y)

# 假设piano_roll是单个MIDI的钢琴卷帘,实际应合并多个MIDI
X, y = create_sequences(piano_roll, seq_length=3)

# 搭建模型(LSTM是RNN的改进版,更擅长长序列记忆)
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.3))  # 防止过拟合
model.add(LSTM(256))
model.add(Dropout(0.3))
model.add(Dense(128, activation='softmax'))  # 输出每个音高的概率

model.compile(loss='categorical_crossentropy', optimizer='adam')

# 训练模型(实际应使用多个MIDI文件,这里简化为单个)
model.fit(X, y, epochs=50, batch_size=32)
步骤3:生成新旋律并转换回MIDI
from music21 import stream, note

def generate_midi(model, initial_sequence, length=32, window_size=0.25):
    generated_roll = initial_sequence.copy()
    for _ in range(length):
        # 输入最后seq_length个时间步
        input_seq = generated_roll[-3:].reshape(1, 3, 128)
        # 预测下一个时间步的音高概率
        pred_probs = model.predict(input_seq, verbose=0)[0]
        # 采样音高(这里用温度采样增加随机性)
        temperature = 0.7  # 温度越低越确定,越高越随机
        pred_probs = np.log(pred_probs) / temperature
        pred_probs = np.exp(pred_probs) / np.sum(np.exp(pred_probs))
        next_pitch = np.random.choice(128, p=pred_probs)
        # 生成新时间步(仅标记选中的音高)
        new_step = np.zeros(128)
        new_step[next_pitch] = 1
        generated_roll = np.append(generated_roll, [new_step], axis=0)

    # 钢琴卷帘转MIDI
    s = stream.Stream()
    current_time = 0
    for step in range(len(generated_roll)):
        pitches = np.where(generated_roll[step] == 1)[0]
        for pitch in pitches:
            n = note.Note(pitch)
            n.duration.quarterLength = window_size  # 每个时间步0.25秒
            n.offset = current_time  # 音符起始时间
            s.insert(n)
        current_time += window_size
    return s

# 生成初始序列(取真实数据的前3个时间步)
initial = piano_roll[:3]
generated_stream = generate_midi(model, initial, length=32)
generated_stream.write('midi', 'generated_melody.mid')  # 保存为MIDI文件

代码解读与分析

  • 预处理:将MIDI转换为钢琴卷帘矩阵,每个时间步记录128个音高的“按下”状态(1表示按下,0表示未按下)。
  • 序列创建:用前3个时间步预测第4个,帮助模型学习“短期依赖”(比如小旋律片段的规律)。
  • 模型结构:两层LSTM捕捉长短期依赖,Dropout层防止过拟合(避免模型只记住训练数据,无法生成新旋律)。
  • 生成逻辑:使用“温度采样”(Temperature Sampling)控制生成的随机性——温度低时选择概率最高的音高(更保守),温度高时随机选择(更有创意)。

实际应用场景

AI作曲已从实验室走向实际应用,以下是几个典型场景:

1. 游戏/影视背景音乐生成

游戏需要大量适配不同场景的音乐(战斗、解谜、休息),AI可以根据场景关键词(“紧张”“舒缓”)生成定制音乐,降低制作成本。例如,游戏《Cyberpunk 2077》就使用了AI生成的环境音效。

2. 个性化音乐推荐

音乐平台(如Spotify)可以分析用户听歌习惯,用AI生成“只属于你的”个性化旋律,作为推荐列表的补充。

3. 辅助音乐创作

作曲家可以用AI生成“灵感片段”,比如输入“C大调、4/4拍、抒情”,AI生成一段旋律,作曲家在此基础上修改完善。Google的Magenta就是典型工具。

4. 教育领域

音乐初学者可以通过AI生成的旋律学习作曲规律(比如“副歌通常用大调”),AI还能自动评估练习曲的优缺点(“这里和弦转换不够流畅”)。


工具和资源推荐

1. 开源框架

  • Magenta(Google):专注音乐/艺术生成的AI框架,内置RNN、Transformer等模型,支持MIDI输入输出(官网)。
  • OpenAI Jukebox:能生成分钟级、带歌词的歌曲,支持风格(摇滚、爵士)和艺术家模仿(论文)。
  • DDSP(Google):基于信号处理的生成模型,能更精细控制音色(GitHub)。

2. 数据集

  • Lakh MIDI Dataset:17万+MIDI文件,覆盖多种风格(下载)。
  • MAESTRO:800+小时古典钢琴MIDI,带音符级时间标签(官网)。

3. 学习资源

  • 书籍:《生成式人工智能:AIGC技术原理与应用实践》(全面讲解AIGC技术)。
  • 课程:Coursera《Natural Language Processing with Sequence Models》(RNN/Transformer的详细讲解)。

未来发展趋势与挑战

趋势1:多模态生成

未来AI作曲可能结合歌词、情绪、视频画面等多模态信息。例如,输入一段电影画面(悲伤的离别场景),AI生成“缓慢、小调、钢琴为主”的背景音乐。

趋势2:可控性提升

目前AI生成的旋律可能“好听但没主题”,未来模型将支持更细粒度的控制(“前8小节升调,后8小节加入小提琴”)。

挑战1:版权与伦理

AI生成的音乐版权归属(是用户、开发者还是AI?)、是否会导致音乐创作“同质化”(大家都用相似的AI模型)是亟待解决的问题。

挑战2:模型可解释性

AI生成某个旋律的原因(“为什么选这个音?”)难以解释,这对音乐教育和艺术批判是个挑战。


总结:学到了什么?

核心概念回顾

  • 音乐表征:AI用MIDI/钢琴卷帘“读”音乐,就像用数字配方“读”蛋糕做法。
  • 生成模型:RNN(记歌词)、Transformer(抓重点)、GAN(互相较劲)是AI的“作曲大脑”。
  • 损失函数:AI的“纠错老师”,指导模型调整参数。

概念关系回顾

音乐表征是原材料,生成模型是加工机器,损失函数是质检工具——三者协同工作,让AI从“学作曲”到“会作曲”。


思考题:动动小脑筋

  1. 如果让AI生成一首“中国风”的旋律,你会在数据预处理或模型设计上做哪些调整?(提示:中国风常用五声音阶)
  2. 你认为AI作曲会取代人类作曲家吗?为什么?(可以从“情感表达”“创造性”等角度思考)
  3. 尝试用Magenta框架生成一段旋律(教程),并分享你的体验(比如“生成的旋律有什么特点?”)。

附录:常见问题与解答

Q:AI生成的音乐有版权吗?
A:目前多数国家认为AI生成的内容不具备版权(因为“作者”需是人类),但用户对AI生成内容的修改版本可能拥有版权。

Q:AI作曲需要懂音乐理论吗?
A:不需要!AI通过学习大量音乐数据自动掌握规律,但懂音乐理论可以更好地指导AI(比如指定“用C大调”)。

Q:AI生成的旋律会重复吗?
A:会!如果训练数据有限,AI可能生成重复片段。解决方法是增加数据多样性,或在生成时加入随机性(如温度采样)。


扩展阅读 & 参考资料

  • 论文:《MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation》(MuseGAN模型详解)。
  • 博客:《How AI Composes Music: A Deep Dive into Generative Models》(Medium,AI作曲技术深度解析)。
  • 工具文档:《Magenta Documentation》(官方教程,含代码示例)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值