揭秘 AIGC 领域 AI 作曲的核心算法:从音符到旋律的魔法工厂
关键词:AI作曲、AIGC、生成模型、音乐表征、RNN、Transformer、GAN
摘要:你是否听过AI生成的音乐?从流行歌曲到古典乐章,AI正用代码“创作”出动人旋律。本文将带你走进AI作曲的核心世界,用“做蛋糕”的故事类比复杂算法,拆解RNN、Transformer、GAN等核心技术如何将数学公式转化为跳动的音符。无论你是音乐爱好者还是技术极客,读完都能理解AI作曲的“魔法原理”。
背景介绍
目的和范围
AI作曲是AIGC(人工智能生成内容)的重要分支,本文将聚焦其核心算法原理,覆盖从音乐数据处理到模型生成的全流程,帮助读者理解“AI如何学会写歌”。
预期读者
- 音乐爱好者:想了解AI如何辅助创作
- 技术入门者:对生成模型感兴趣但害怕复杂公式
- 开发者:希望用代码实现简单AI作曲
文档结构概述
本文从“蛋糕店的新学徒”故事切入,逐步讲解音乐数据的“原材料”(音乐表征)、“烹饪工具”(生成模型),再通过代码实战演示AI作曲的具体过程,最后探讨未来趋势。
术语表
- MIDI:音乐设备数字接口(Musical Instrument Digital Interface),用数字信号记录音符、力度等信息(类比“乐谱的电子版”)。
- 钢琴卷帘(Piano Roll):MIDI的可视化形式,横轴是时间,纵轴是钢琴键,色块表示音符(像“时间-音高的表格”)。
- RNN(循环神经网络):能记住“过去”的神经网络(类比“会记歌词的歌手”)。
- Transformer:用“注意力”聚焦关键信息的模型(类比“听音乐时自动抓住主歌的听众”)。
- GAN(生成对抗网络):由“生成器”和“判别器”组成的“对抗训练”模型(类比“互相切磋的作曲家和乐评人”)。
核心概念与联系
故事引入:蛋糕店的新学徒——AI如何“学作曲”?
想象你开了一家“旋律蛋糕店”,客人想要定制一首“温暖、带点钢琴前奏的小甜歌”。过去你得自己翻乐谱、试和弦,现在店里来了个AI学徒:
- 学经验:AI先“读”了10000首经典歌曲的MIDI文件(像学徒背了10000份蛋糕配方);
- 找规律:它发现“C大调”的曲子常以“1-3-5”和弦开头(像学徒发现“草莓蛋糕”总用新鲜草莓);
- 做新蛋糕:根据规律,AI生成了一首“C大调、钢琴前奏、温暖风格”的新歌(像学徒用新草莓做了创新蛋糕)。
这个过程的关键,就是AI作曲的核心——用生成模型从音乐数据中学习规律,再生成新旋律。
核心概念解释(像给小学生讲故事一样)
核心概念一:音乐表征——AI的“乐谱字典”
AI不会读纸质乐谱,它需要把音乐转换成自己能“看懂”的数字形式,这就是音乐表征。最常用的是MIDI和钢琴卷帘:
- MIDI:就像给每个音符发“身份证”——记录音高(多高的音,比如“中央C”是60)、时长(弹多久,比如0.5秒)、力度(弹多用力,比如80/127)。
- 钢琴卷帘:把MIDI画成表格,横轴是时间(每一格0.25秒),纵轴是钢琴键(从低音到高音)。如果某个时间格的某个琴键被按下,就涂一个色块(像“时间-音高的涂色本”)。
类比:音乐表征就像把蛋糕配方写成“面粉200g、糖50g、烤箱180℃”的数字步骤,AI看了就能“按方做蛋糕”。
核心概念二:生成模型——AI的“作曲大脑”
生成模型是AI的“作曲大脑”,它能从大量音乐数据中学习规律,然后“猜”出下一个音符。常见的有三种:
- RNN(循环神经网络):像会“记歌词”的大脑。它每一步生成音符时,都会记住之前所有音符(比如前三个音是“1-3-5”,它会记住这个序列,然后预测第四个音可能是“1”或“6”)。
- Transformer:像“抓重点”的听众。它生成音符时,不仅记住之前的音,还能“注意”到更重要的部分(比如主歌的旋律比伴奏更关键,就多关注主歌的历史音符)。
- GAN(生成对抗网络):像“互相较劲”的两人组。一个“生成器”拼命写旋律,另一个“判别器”拼命挑毛病(“这旋律太老套!”),两人越斗越厉害,最后生成器能写出连判别器都辨不出真假的好旋律。
核心概念三:损失函数——AI的“纠错老师”
AI作曲不是一步到位的,它需要“纠错老师”指导。损失函数就是这个老师,它计算AI生成的旋律和真实旋律的差距(比如音高错了、节奏太乱),然后告诉模型“哪里需要改”。比如:
- 如果真实旋律的下一个音是“6”,但AI猜成“7”,损失函数会说“音高错了,罚分!”;
- 如果真实节奏是“四分音符”,但AI写成“八分音符”,损失函数会说“节奏错了,罚分!”。
类比:损失函数就像蛋糕店的质检表——“甜度不够扣1分,蛋糕太扁扣2分”,AI根据扣分调整配方。
核心概念之间的关系(用小学生能理解的比喻)
音乐表征、生成模型、损失函数就像“蛋糕三兄弟”:
- **音乐表征(乐谱字典)**是原材料,生成模型(作曲大脑)是烤箱,损失函数(纠错老师)是温度计。
- 没有乐谱字典(原材料),烤箱(生成模型)不知道该烤什么;没有温度计(损失函数),烤箱可能烤焦或没烤熟。
具体关系:
- 音乐表征 ↔ 生成模型:生成模型需要“读”懂音乐表征(就像烤箱需要“读”懂蛋糕配方),才能学习规律。
- 生成模型 ↔ 损失函数:生成模型生成旋律后,损失函数计算“多差”,然后指导模型调整参数(就像温度计告诉烤箱“温度高了,调低10℃”)。
- 音乐表征 ↔ 损失函数:损失函数的计算依赖音乐表征的具体形式(比如用钢琴卷帘的话,损失函数会检查色块位置对不对)。
核心概念原理和架构的文本示意图
AI作曲的核心流程:
音乐数据(MIDI/钢琴卷帘) → 预处理(转数字矩阵) → 生成模型(RNN/Transformer/GAN) → 损失函数(计算误差) → 调整模型 → 生成新旋律(MIDI输出)
Mermaid 流程图
graph TD
A[原始音乐数据] --> B[预处理:转钢琴卷帘矩阵]
B --> C[生成模型(RNN/Transformer/GAN)]
C --> D[生成候选旋律矩阵]
D --> E[损失函数:对比真实数据计算误差]
E --> F{误差是否足够小?}
F -->|否| C[调整模型参数]
F -->|是| G[输出MIDI旋律]
核心算法原理 & 具体操作步骤
AI作曲的核心是序列生成(按时间顺序生成音符),常用算法有RNN、Transformer、GAN,我们逐一拆解。
1. RNN(循环神经网络):会“记歌词”的作曲者
原理
RNN的核心是“记忆单元”,每个时间步的输出不仅依赖当前输入,还依赖之前的“记忆”。用公式表示:
h
t
=
σ
(
W
h
h
h
t
−
1
+
W
x
h
x
t
+
b
h
)
h_t = \sigma(W_{hh} h_{t-1} + W_{xh} x_t + b_h)
ht=σ(Whhht−1+Wxhxt+bh)
y
t
=
σ
(
W
h
y
h
t
+
b
y
)
y_t = \sigma(W_{hy} h_t + b_y)
yt=σ(Whyht+by)
其中:
- ( h_t ) 是t时刻的“记忆状态”(比如前t个音符的记忆);
- ( x_t ) 是t时刻的输入(当前音符的钢琴卷帘向量);
- ( y_t ) 是t时刻的输出(预测的下一个音符概率分布);
- ( W ) 和 ( b ) 是模型参数(需要训练学习);
- ( \sigma ) 是激活函数(比如Sigmoid或ReLU)。
类比:RNN像一个记歌词的小朋友,第一句记住“一闪一闪”,第二句就知道接“亮晶晶”,因为它记住了前一句的内容。
具体操作步骤(用Python代码示例)
我们用Keras实现一个简单的RNN来生成旋律:
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense
# 步骤1:准备数据(假设已将MIDI转为钢琴卷帘矩阵)
# 钢琴卷帘矩阵形状:(样本数, 时间步, 音高数),这里音高数=128(钢琴88键+扩展)
# 例如:X是前3个时间步的音符,y是第4个时间步的音符
X = np.random.rand(1000, 3, 128) # 1000个样本,每个样本3个时间步,128个音高
y = np.random.rand(1000, 128) # 预测下一个时间步的128个音高概率
# 步骤2:搭建RNN模型(这里用LSTM,RNN的改进版,更擅长长记忆)
model = Sequential()
model.add(LSTM(128, input_shape=(3, 128), return_sequences=False)) # 记忆层
model.add(Dense(128, activation='softmax')) # 输出每个音高的概率
# 步骤3:编译模型(损失函数用交叉熵,优化器用Adam)
model.compile(loss='categorical_crossentropy', optimizer='adam')
# 步骤4:训练模型(假设训练100轮)
model.fit(X, y, epochs=100, batch_size=32)
# 步骤5:生成旋律(输入初始3个时间步,预测第4个,然后循环)
def generate_melody(initial_sequence, length=10):
melody = initial_sequence.copy()
for _ in range(length):
# 输入当前最后3个时间步
input = melody[-3:].reshape(1, 3, 128)
# 预测下一个音符概率
next_note_probs = model.predict(input)[0]
# 采样得到具体音高(这里用argmax选概率最高的)
next_note = np.argmax(next_note_probs)
# 生成新的钢琴卷帘向量(对应音高位置设为1)
new_vector = np.zeros(128)
new_vector[next_note] = 1
melody = np.append(melody, [new_vector], axis=0)
return melody
# 测试生成(初始序列是随机3个时间步)
initial = np.random.rand(3, 128)
generated = generate_melody(initial, length=10)
2. Transformer:用“注意力”抓重点的作曲者
原理
Transformer的核心是自注意力机制(Self-Attention),它能让模型在生成每个音符时,“关注”序列中最相关的部分(比如主歌的旋律比伴奏更重要)。自注意力的计算步骤:
- 给输入序列的每个元素(音符)生成三个向量:查询(Query)、键(Key)、值(Value);
- 计算每个Query与所有Key的相似度(点积),得到“注意力分数”(关注哪些位置);
- 用Softmax归一化分数,得到注意力权重;
- 用权重加权求和Value,得到输出(聚焦关键信息后的结果)。
数学公式:
Attention
(
Q
,
K
,
V
)
=
softmax
(
Q
K
T
d
k
)
V
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{QK^T}{\sqrt{d_k}} \right) V
Attention(Q,K,V)=softmax(dkQKT)V
其中 ( d_k ) 是Key的维度(防止点积过大导致梯度消失)。
类比:听音乐时,你可能自动忽略背景噪音,只关注主唱的声音——Transformer的注意力机制就是这样“抓重点”。
具体操作步骤(关键代码片段)
Transformer在音乐生成中常用“因果注意力”(只能看左边的音符,不能看未来),以下是关键层的实现:
from tensorflow.keras.layers import Layer
import tensorflow as tf
class CausalSelfAttention(Layer):
def __init__(self, d_model, num_heads):
super().__init__()
self.d_model = d_model
self.num_heads = num_heads
self.depth = d_model // num_heads
# 生成Q、K、V的线性层
self.wq = Dense(d_model)
self.wk = Dense(d_model)
self.wv = Dense(d_model)
# 输出线性层
self.dense = Dense(d_model)
def split_heads(self, x, batch_size):
# 将x拆分为(num_heads, depth)
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, x):
batch_size = tf.shape(x)[0]
seq_len = tf.shape(x)[1]
# 生成Q、K、V
q = self.wq(x) # (batch_size, seq_len, d_model)
k = self.wk(x)
v = self.wv(x)
# 拆分多头
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len, depth)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
# 计算注意力分数(因果掩码:未来位置设为-∞,避免看未来)
matmul_qk = tf.matmul(q, k, transpose_b=True) # (batch_size, num_heads, seq_len, seq_len)
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
# 因果掩码(下三角矩阵,上三角为-∞)
mask = 1 - tf.linalg.band_part(tf.ones((seq_len, seq_len)), -1, 0)
scaled_attention_logits += (mask * -1e9)
# Softmax归一化
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (batch_size, num_heads, seq_len, seq_len)
# 加权求和Value
output = tf.matmul(attention_weights, v) # (batch_size, num_heads, seq_len, depth)
output = tf.transpose(output, perm=[0, 2, 1, 3]) # (batch_size, seq_len, num_heads, depth)
output = tf.reshape(output, (batch_size, seq_len, self.d_model)) # (batch_size, seq_len, d_model)
# 输出线性层
output = self.dense(output)
return output
3. GAN(生成对抗网络):互相“较劲”的作曲者与乐评人
原理
GAN由两个模型组成:
- 生成器(Generator):输入随机噪声,生成假旋律(目标:让判别器误以为是真的);
- 判别器(Discriminator):输入真/假旋律,输出“真”的概率(目标:准确区分真假)。
训练时,生成器和判别器“对抗训练”:生成器努力骗过判别器,判别器努力不被骗,最终生成器能生成以假乱真的旋律。
损失函数公式:
min
G
max
D
V
(
D
,
G
)
=
E
x
∼
p
d
a
t
a
(
x
)
[
log
D
(
x
)
]
+
E
z
∼
p
z
(
z
)
[
log
(
1
−
D
(
G
(
z
)
)
)
]
\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]
GminDmaxV(D,G)=Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]
其中 ( x ) 是真实数据,( z ) 是随机噪声,( G(z) ) 是生成的假数据。
类比:生成器像造假钞的,判别器像验钞机。造假钞的想造得更真,验钞机想更准,最后假钞能骗过验钞机时,生成器就成功了。
具体操作步骤(简化代码)
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense, LeakyReLU
# 生成器:输入噪声,输出假旋律(钢琴卷帘向量)
def build_generator(latent_dim, output_dim=128):
model = Sequential()
model.add(Dense(256, input_dim=latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(output_dim, activation='sigmoid')) # 输出0-1的概率(钢琴卷帘的“按下”概率)
return model
# 判别器:输入旋律,输出“真”的概率
def build_discriminator(input_dim=128):
model = Sequential()
model.add(Dense(512, input_dim=input_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid')) # 输出0(假)到1(真)的概率
model.compile(loss='binary_crossentropy', optimizer='adam')
return model
# 组合GAN:生成器+冻结的判别器
def build_gan(generator, discriminator):
discriminator.trainable = False # 训练生成器时不更新判别器
gan_input = Input(shape=(latent_dim,))
x = generator(gan_input)
gan_output = discriminator(x)
model = Model(gan_input, gan_output)
model.compile(loss='binary_crossentropy', optimizer='adam')
return model
# 训练参数
latent_dim = 100 # 噪声维度
output_dim = 128 # 钢琴卷帘维度(128个音高)
epochs = 10000
batch_size = 64
# 构建模型
generator = build_generator(latent_dim, output_dim)
discriminator = build_discriminator(output_dim)
gan = build_gan(generator, discriminator)
# 加载真实数据(假设已预处理为钢琴卷帘矩阵)
real_data = np.load('piano_rolls.npy') # 形状:(num_samples, output_dim)
# 训练循环
for epoch in range(epochs):
# 训练判别器:用真数据和假数据
# 真数据标签为1,假数据标签为0
idx = np.random.randint(0, real_data.shape[0], batch_size)
real_batch = real_data[idx]
real_labels = np.ones((batch_size, 1)) * 0.9 # 标签平滑(避免过自信)
noise = np.random.normal(0, 1, (batch_size, latent_dim))
fake_batch = generator.predict(noise)
fake_labels = np.zeros((batch_size, 1))
# 训练判别器
d_loss_real = discriminator.train_on_batch(real_batch, real_labels)
d_loss_fake = discriminator.train_on_batch(fake_batch, fake_labels)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# 训练生成器:目标是让判别器将假数据判为1
noise = np.random.normal(0, 1, (batch_size, latent_dim))
valid_labels = np.ones((batch_size, 1)) # 生成器希望判别器认为假数据是真的
g_loss = gan.train_on_batch(noise, valid_labels)
# 打印进度
if epoch % 100 == 0:
print(f"Epoch {epoch}, D Loss: {d_loss}, G Loss: {g_loss}")
数学模型和公式 & 详细讲解 & 举例说明
RNN的状态转移
RNN的核心是状态 ( h_t ),它由前一状态 ( h_{t-1} ) 和当前输入 ( x_t ) 共同决定:
h
t
=
tanh
(
W
h
h
h
t
−
1
+
W
x
h
x
t
+
b
h
)
h_t = \tanh(W_{hh} h_{t-1} + W_{xh} x_t + b_h)
ht=tanh(Whhht−1+Wxhxt+bh)
这里用了双曲正切函数 ( \tanh )(输出范围[-1,1],防止数值爆炸)。
举例:假设 ( h_{t-1} = [0.5, -0.3] )(记住前一个音符的“开心”和“悲伤”程度),( x_t = [1, 0] )(当前音符是C大调),权重 ( W_{hh} = [[0.2, 0.1], [0.4, -0.1]] ),( W_{xh} = [[0.3, -0.2], [0.5, 0.1]] ),偏置 ( b_h = [0.1, -0.1] ),则:
W
h
h
h
t
−
1
=
[
0.2
∗
0.5
+
0.1
∗
(
−
0.3
)
,
0.4
∗
0.5
+
(
−
0.1
)
∗
(
−
0.3
)
]
=
[
0.1
−
0.03
,
0.2
+
0.03
]
=
[
0.07
,
0.23
]
W_{hh} h_{t-1} = [0.2*0.5 + 0.1*(-0.3), 0.4*0.5 + (-0.1)*(-0.3)] = [0.1 - 0.03, 0.2 + 0.03] = [0.07, 0.23]
Whhht−1=[0.2∗0.5+0.1∗(−0.3),0.4∗0.5+(−0.1)∗(−0.3)]=[0.1−0.03,0.2+0.03]=[0.07,0.23]
W
x
h
x
t
=
[
0.3
∗
1
+
(
−
0.2
)
∗
0
,
0.5
∗
1
+
0.1
∗
0
]
=
[
0.3
,
0.5
]
W_{xh} x_t = [0.3*1 + (-0.2)*0, 0.5*1 + 0.1*0] = [0.3, 0.5]
Wxhxt=[0.3∗1+(−0.2)∗0,0.5∗1+0.1∗0]=[0.3,0.5]
h
t
=
tanh
(
[
0.07
+
0.3
+
0.1
,
0.23
+
0.5
−
0.1
]
)
=
tanh
(
[
0.47
,
0.63
]
)
≈
[
0.44
,
0.56
]
h_t = \tanh([0.07 + 0.3 + 0.1, 0.23 + 0.5 - 0.1]) = \tanh([0.47, 0.63]) ≈ [0.44, 0.56]
ht=tanh([0.07+0.3+0.1,0.23+0.5−0.1])=tanh([0.47,0.63])≈[0.44,0.56]
新的状态 ( h_t ) 综合了之前的记忆和当前输入,用于预测下一个音符。
Transformer的注意力分数
注意力分数衡量“当前位置”与“其他位置”的相关性。例如,生成第5个音符时,模型会计算它与前4个音符的相关性:
- 如果前4个音符是“1-3-5-1”(C大三和弦),第5个音符可能与第1个(“1”)最相关(分数最高),因此注意力权重更大。
GAN的损失函数
生成器的目标是最小化 ( \log(1 - D(G(z))) )(让判别器更难发现假数据),判别器的目标是最大化 ( \log D(x) + \log(1 - D(G(z))) )(准确区分真假)。
举例:如果生成器生成了一个很假的旋律(D(G(z))=0.1),则 ( \log(1 - 0.1) ≈ -0.105 ),损失较小;如果生成器生成了一个很真的旋律(D(G(z))=0.9),则 ( \log(1 - 0.9) ≈ -2.303 ),损失变大——这说明生成器需要调整参数,让D(G(z))更接近1(即生成更真的旋律)。
项目实战:代码实际案例和详细解释说明
开发环境搭建
- 安装Python:推荐Python 3.8+(下载地址)。
- 安装依赖库:
pip install tensorflow==2.12.0 # 深度学习框架 pip install music21==8.1.0 # 处理MIDI文件 pip install numpy==1.24.3 # 数值计算 pip install matplotlib==3.7.1 # 可视化钢琴卷帘
- 准备MIDI数据集:推荐使用Lakh MIDI数据集(包含17万+MIDI文件)。
源代码详细实现和代码解读
我们以RNN为例,实现一个从MIDI文件到生成旋律的完整流程。
步骤1:MIDI文件预处理(转钢琴卷帘)
用music21
库读取MIDI,提取音符并转换为钢琴卷帘矩阵。
from music21 import converter, note, chord
import numpy as np
def midi_to_piano_roll(midi_path, window_size=0.25):
# 读取MIDI文件
midi = converter.parse(midi_path)
notes = []
# 遍历所有音符和和弦
for element in midi.flat.notes:
if isinstance(element, note.Note):
# 单音:记录音高和时长
notes.append((element.pitch.midi, element.duration.quarterLength))
elif isinstance(element, chord.Chord):
# 和弦:每个音单独记录
for pitch in element.pitches:
notes.append((pitch.midi, element.duration.quarterLength))
# 转换为时间序列(按0.25秒为一个时间步)
max_time = sum(duration for _, duration in notes)
num_steps = int(max_time / window_size) + 1
piano_roll = np.zeros((num_steps, 128)) # 128个音高,0-127
current_time = 0
for (pitch, duration) in notes:
start_step = int(current_time / window_size)
end_step = int((current_time + duration) / window_size)
# 在时间步[start_step, end_step)内标记音高
for step in range(start_step, end_step):
if step < num_steps:
piano_roll[step, pitch] = 1 # 1表示该音高被按下
current_time += duration
return piano_roll
# 测试:读取一个MIDI文件并转换
piano_roll = midi_to_piano_roll('example.mid')
print(f"钢琴卷帘形状:{piano_roll.shape}") # 输出:(时间步数, 128)
步骤2:构建RNN模型并训练
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
# 准备训练数据:前n个时间步预测第n+1个时间步
def create_sequences(piano_roll, seq_length=3):
X, y = [], []
for i in range(len(piano_roll) - seq_length):
X.append(piano_roll[i:i+seq_length]) # 输入:前seq_length个时间步
y.append(piano_roll[i+seq_length]) # 输出:下一个时间步
return np.array(X), np.array(y)
# 假设piano_roll是单个MIDI的钢琴卷帘,实际应合并多个MIDI
X, y = create_sequences(piano_roll, seq_length=3)
# 搭建模型(LSTM是RNN的改进版,更擅长长序列记忆)
model = Sequential()
model.add(LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True))
model.add(Dropout(0.3)) # 防止过拟合
model.add(LSTM(256))
model.add(Dropout(0.3))
model.add(Dense(128, activation='softmax')) # 输出每个音高的概率
model.compile(loss='categorical_crossentropy', optimizer='adam')
# 训练模型(实际应使用多个MIDI文件,这里简化为单个)
model.fit(X, y, epochs=50, batch_size=32)
步骤3:生成新旋律并转换回MIDI
from music21 import stream, note
def generate_midi(model, initial_sequence, length=32, window_size=0.25):
generated_roll = initial_sequence.copy()
for _ in range(length):
# 输入最后seq_length个时间步
input_seq = generated_roll[-3:].reshape(1, 3, 128)
# 预测下一个时间步的音高概率
pred_probs = model.predict(input_seq, verbose=0)[0]
# 采样音高(这里用温度采样增加随机性)
temperature = 0.7 # 温度越低越确定,越高越随机
pred_probs = np.log(pred_probs) / temperature
pred_probs = np.exp(pred_probs) / np.sum(np.exp(pred_probs))
next_pitch = np.random.choice(128, p=pred_probs)
# 生成新时间步(仅标记选中的音高)
new_step = np.zeros(128)
new_step[next_pitch] = 1
generated_roll = np.append(generated_roll, [new_step], axis=0)
# 钢琴卷帘转MIDI
s = stream.Stream()
current_time = 0
for step in range(len(generated_roll)):
pitches = np.where(generated_roll[step] == 1)[0]
for pitch in pitches:
n = note.Note(pitch)
n.duration.quarterLength = window_size # 每个时间步0.25秒
n.offset = current_time # 音符起始时间
s.insert(n)
current_time += window_size
return s
# 生成初始序列(取真实数据的前3个时间步)
initial = piano_roll[:3]
generated_stream = generate_midi(model, initial, length=32)
generated_stream.write('midi', 'generated_melody.mid') # 保存为MIDI文件
代码解读与分析
- 预处理:将MIDI转换为钢琴卷帘矩阵,每个时间步记录128个音高的“按下”状态(1表示按下,0表示未按下)。
- 序列创建:用前3个时间步预测第4个,帮助模型学习“短期依赖”(比如小旋律片段的规律)。
- 模型结构:两层LSTM捕捉长短期依赖,Dropout层防止过拟合(避免模型只记住训练数据,无法生成新旋律)。
- 生成逻辑:使用“温度采样”(Temperature Sampling)控制生成的随机性——温度低时选择概率最高的音高(更保守),温度高时随机选择(更有创意)。
实际应用场景
AI作曲已从实验室走向实际应用,以下是几个典型场景:
1. 游戏/影视背景音乐生成
游戏需要大量适配不同场景的音乐(战斗、解谜、休息),AI可以根据场景关键词(“紧张”“舒缓”)生成定制音乐,降低制作成本。例如,游戏《Cyberpunk 2077》就使用了AI生成的环境音效。
2. 个性化音乐推荐
音乐平台(如Spotify)可以分析用户听歌习惯,用AI生成“只属于你的”个性化旋律,作为推荐列表的补充。
3. 辅助音乐创作
作曲家可以用AI生成“灵感片段”,比如输入“C大调、4/4拍、抒情”,AI生成一段旋律,作曲家在此基础上修改完善。Google的Magenta就是典型工具。
4. 教育领域
音乐初学者可以通过AI生成的旋律学习作曲规律(比如“副歌通常用大调”),AI还能自动评估练习曲的优缺点(“这里和弦转换不够流畅”)。
工具和资源推荐
1. 开源框架
- Magenta(Google):专注音乐/艺术生成的AI框架,内置RNN、Transformer等模型,支持MIDI输入输出(官网)。
- OpenAI Jukebox:能生成分钟级、带歌词的歌曲,支持风格(摇滚、爵士)和艺术家模仿(论文)。
- DDSP(Google):基于信号处理的生成模型,能更精细控制音色(GitHub)。
2. 数据集
3. 学习资源
- 书籍:《生成式人工智能:AIGC技术原理与应用实践》(全面讲解AIGC技术)。
- 课程:Coursera《Natural Language Processing with Sequence Models》(RNN/Transformer的详细讲解)。
未来发展趋势与挑战
趋势1:多模态生成
未来AI作曲可能结合歌词、情绪、视频画面等多模态信息。例如,输入一段电影画面(悲伤的离别场景),AI生成“缓慢、小调、钢琴为主”的背景音乐。
趋势2:可控性提升
目前AI生成的旋律可能“好听但没主题”,未来模型将支持更细粒度的控制(“前8小节升调,后8小节加入小提琴”)。
挑战1:版权与伦理
AI生成的音乐版权归属(是用户、开发者还是AI?)、是否会导致音乐创作“同质化”(大家都用相似的AI模型)是亟待解决的问题。
挑战2:模型可解释性
AI生成某个旋律的原因(“为什么选这个音?”)难以解释,这对音乐教育和艺术批判是个挑战。
总结:学到了什么?
核心概念回顾
- 音乐表征:AI用MIDI/钢琴卷帘“读”音乐,就像用数字配方“读”蛋糕做法。
- 生成模型:RNN(记歌词)、Transformer(抓重点)、GAN(互相较劲)是AI的“作曲大脑”。
- 损失函数:AI的“纠错老师”,指导模型调整参数。
概念关系回顾
音乐表征是原材料,生成模型是加工机器,损失函数是质检工具——三者协同工作,让AI从“学作曲”到“会作曲”。
思考题:动动小脑筋
- 如果让AI生成一首“中国风”的旋律,你会在数据预处理或模型设计上做哪些调整?(提示:中国风常用五声音阶)
- 你认为AI作曲会取代人类作曲家吗?为什么?(可以从“情感表达”“创造性”等角度思考)
- 尝试用Magenta框架生成一段旋律(教程),并分享你的体验(比如“生成的旋律有什么特点?”)。
附录:常见问题与解答
Q:AI生成的音乐有版权吗?
A:目前多数国家认为AI生成的内容不具备版权(因为“作者”需是人类),但用户对AI生成内容的修改版本可能拥有版权。
Q:AI作曲需要懂音乐理论吗?
A:不需要!AI通过学习大量音乐数据自动掌握规律,但懂音乐理论可以更好地指导AI(比如指定“用C大调”)。
Q:AI生成的旋律会重复吗?
A:会!如果训练数据有限,AI可能生成重复片段。解决方法是增加数据多样性,或在生成时加入随机性(如温度采样)。
扩展阅读 & 参考资料
- 论文:《MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation》(MuseGAN模型详解)。
- 博客:《How AI Composes Music: A Deep Dive into Generative Models》(Medium,AI作曲技术深度解析)。
- 工具文档:《Magenta Documentation》(官方教程,含代码示例)。