task02: 详读【西瓜书+南瓜书】第3章——线性回归【机器学习】

前言

本次笔记来源于学习Datawhale AI夏令营的记录概要,纯私人记录,部分公式推导图片来源于其他帖子。

资料链接:Datawhale-学用 AI,从此开始

3.1 基本形式

        给定由d个属性描述的示例x=(x_{1};x_{2};x_{3}...x_{d}),其中x_{i}是x在第i个属性上的取值,线性模型(linear model)试图学得一个通过权重向量\omega =(\omega_{1};\omega_{2};\omega_{3}...\omega_{d})和偏置项b的线性组合来进行预测的函数,即

f(x)=\omega_{1}x_{1}+\omega_{2}x_{2}+...+\omega_{d}x_{d}+b

一般用向量形式写成

f(x)=\omega ^{T}x+b

许多功能更为强大的非线性模型(nonlinear model)可在线性模型的基础上通过引入层级结构或高维映射而得。此外,由于\omega直观表达了各属性在预测中的重要性,因此线性模型有很好的可解释性(comprehensibility)。

3.2 一元线性回归

3.2.1最小二乘估计

基于均方误差最小化来进行模型求解的方法称为“最小二乘法”

E(\omega ,b)=\sum_{i=1}^{m}(y_{i}-f(x_{i}))^{2}

                      =\sum_{i=1}^{m}(y_{i}-(\omega x_{i}+b))^{2}

                 =\sum_{i=1}^{m}(y_{i}-\omega x_{i}-b)

我们可以将E(\omega ,b)分别对\omegab求导,得到

 

然后令两式为零可以得到 \omegab最优解的闭式

 3.2.2 极大似然估计

用途:估计概率分布的参数值

方法:对于离散型、连续型随机变量X,假设其概率质量函数为P(x,\theta ),其中\theta为待估计的参数值(可以有多个),现有x_{1},x_{2},...,x_{n}是来自X的n个独立样本,他们的联合概率为

L(\theta )=\prod_{i=1}^{n}P(x_{i};\theta )

其中 x_{1},x_{2},...,x_{n}是已知量,\theta是未知量,因此上述概率是一个关于\theta的函数,称为样本的似然函数。

机器学习三要素

1.模型:根据具体问题,确定假设空间

2.策略:根据评价标准,确定选取最优模型的策略(通常会产生一个“损失函数”)

3.算法:求解损失函数,确定最优模型

3.3 多元线性回归

在前文公式推导中,我们把 \omegab写入向量形式:\varpi =(\omega ,b),相应地,把数据集D表示为一个m\times (D+1)大小的矩阵​,其中每行对应于一个示例,该行前d个元素对应于示例的d个属性值,最后一个元素恒置为1,即

因此可得:

 接下来我们求导可得

 将其展开可得

求导得

 由矩阵微分式可得

则最终学得的多元线性回归模型为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值