不同于一般的最短问题,不能直接套模板建图。本题相较于一般的最短路问题更能接近最短路的本质。本题的难点在于建图即如何将一个具体问题抽象成一个图的问题,它教会我们了一个很强的结论,即在构建图的过程中,边不仅可以存储边权,还可以存储其他额外信息
链接
假定有关系(a,b,c),即a和b杂交可以生成c,我们就根据此关系构建两条边,第一条:a -> c,边权维护时间w以及节点b,第二条:b -> c,边权维护时间w以及节点a,当我们遍历到a的时候可以找到c,同样当我们遍历到b的时候也可以找到c,并且我们可以通过边权读取到与这个节点a关联的另一节点b,这样我们便完整描述了所有节点之间的关系,问题转化为了一个图的问题。此时我们需要额外一个数组记录与a或与b相邻的点;
void add(int a,int b,int c)邻接表储存
{
e[idx]=c;
ne[idx]=h[a];
w[idx]=max(t[a],t[b]);注意边权
g[idx]=b;(记录与a相关联的点)
h[a]=idx++;
}
答案是要求通过杂交得到t的最短时间,其实就是求通过已知作物达到节点t的最短路径。
由于已知作物不止一个,所以这并不是一个单源最短路径问题,多源最短路显然超时,我们需要对问题再作更近一步的转换。也就是建立一个虚拟点作为起点,与所有点相连,叫做超级源点
虚拟远点作为零点与任意边之间边权为0
for(int i=1;i<=m;i++)
{
int x;
cin>>x;
add(0,0,x);
}
此时问题转化为单源最短路 我们使用spfa求解,时间复杂度k*o(m)最坏为o(nm)为4e6以内可过
代码:
# include <bits/stdc++.h>
using namespace std;
const int N=2050,M=2e5+N;
int idx,h[N],e[M],ne[M],w[N],g[N],t[N];
int n,m,k,tar;
bool st[N];
int d[N];
queue<int>q;
void add(int a,int b,int c)
{
e[idx]=c;
ne[idx]=h[a];
w[idx]=max(t[a],t[b]);
g[idx]=b;
h[a]=idx++;
}
void spfa()
{
memset(d,0x3f,sizeof d);
d[0]=0;
st[0]=1;
q.push(0);
while(q.size())
{
int t=q.front();
q.pop();
st[t]=0;
for(int i=h[t];i!=-1;i=ne[i])
{
int j=e[i];
if(d[j]>max(d[t],d[g[i]])+w[i])
{
d[j]=max(d[t],d[g[i]])+w[i];
if(!st[j])
{
st[j]=1;
q.push(j);
}
}
}
}
return ;
}
int main()
{
cin>>n>>m>>k>>tar;
memset(h,-1,sizeof h);
for(int i=1;i<=n;i++)
cin>>t[i];
for(int i=1;i<=m;i++)
{
int x;
cin>>x;
add(0,0,x);
}
for(int i=1;i<=k;i++)
{
int a,b,c;
cin>>a>>b>>c;
add(a,b,c);
add(b,a,c);
}
spfa();
cout<<d[tar];
return 0;
}