前缀和算法

例题一

解法(前缀和):
算法思路:
a. 先预处理出来⼀个「前缀和」数组:
dp[i] 表⽰: [1, i] 区间内所有元素的和,那么 dp[i - 1] ⾥⾯存的就是 [1, i - 1] 区间内所有元素的和,那么:可得递推公式: dp[i] = dp[i - 1] + arr[i] ;
b. 使⽤前缀和数组,「快速」求出「某⼀个区间内」所有元素的和:当询问的区间是 [l, r] 时:区间内所有元素的和为: dp[r] - dp[l - 1]

例题二

例题三

解法(前缀和): 算法思路:
从中⼼下标的定义可知,除中⼼下标的元素外,该元素左边的「前缀和」等于该元素右边的「后缀
和」。
因此,我们可以先预处理出来两个数组,⼀个表⽰前缀和,另⼀个表⽰后缀和。
然后,我们可以⽤⼀个 for 循环枚举可能的中⼼下标,判断每⼀个位置的「前缀和」以及
「后缀和」,如果⼆者相等,就返回当前下标。

例题四

解法(前缀和数组):
算法思路:
注意题⽬的要求,不能使⽤除法,并且要在 O(N) 的时间复杂度内完成该题。那么我们就不能使
⽤暴⼒的解法,以及求出整个数组的乘积,然后除以单个元素的⽅法。
继续分析,根据题意,对于每⼀个位置的最终结果 ret[i] ,它是由两部分组成的:
i. nums[0] * nums[1] * nums[2] * ... * nums[i - 1]
ii. nums[i + 1] * nums[i + 2] * ... * nums[n - 1]
于是,我们可以利⽤前缀和的思想,使⽤两个数组 lmul 和 rmul,分别处理出来两个信息:
i. lmul 表⽰:i 位置之前的所有元素,即 [0, i - 1] 区间内所有元素的前缀乘积,
ii. rmul 表⽰: i 位置之后的所有元素,即 [i + 1, n - 1] 区间内所有元素的后缀乘积,然后再处理最终结果。

例题五

解法(将前缀和存在哈希表中):
算法思路:
i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
想知道有多少个「以 i 为结尾的和为 k 的⼦数组」,就要找到有多少个起始位置为 x1, x2, x3... 使得 [x, i] 区间内的所有元素的和为 k 。那么 [0, x] 区间内的和是不是就是 sum[i] - k 了。于是问题就变成: 找到在 [0, i - 1] 区间内,有多少前缀和等于 sum[i] - k 的即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,有多少个前缀和等于
sum[i] - k 。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边存下之前每⼀种
前缀和出现的次数。

例题六

解法(前缀和在哈希表中):
本题需要的前置知识:
同余定理
如果 (a - b) % n == 0 ,那么我们可以得到⼀个结论: a % n == b % n 。⽤⽂字叙
述就是,如果两个数相减的差能被 n 整除,那么这两个数对 n 取模的结果相同。 例如: (26 - 2) % 12 == 0 ,那么 26 % 12 == 2 % 12 == 2
c++ 中负数取模的结果,以及如何修正「负数取模」的结果
a. c++ 中关于负数的取模运算,结果是「把负数当成正数,取模之后的结果加上⼀个负号」。
例如: -1 % 3 = -(1 % 3) = -1
b. 因为有负数,为了防⽌发⽣「出现负数」的结果,以 (a % n + n) % n 的形式输出保证为正。
例如: -1 % 3 = (-1 % 3 + 3) % 3 = 2
算法思路:
思路与 560. 和为 K 的⼦数组 这道题的思路相似。
设 i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。
想知道有多少个「以 i 为结尾的可被 k 整除的⼦数组」,就要找到有多少个起始位置为 x1, x2, x3... 使得 [x, i] 区间内的所有元素的和可被 k 整除。
设 [0, x - 1] 区间内所有元素之和等于 a [0, i] 区间内所有元素的和等于 b ,可得 (b - a) % k == 0 。
由同余定理可得, [0, x - 1] 区间与 [0, i] 区间内的前缀和同余。于是问题就变成:
找到在 [0, i - 1] 区间内,有多少前缀和的余数等于 sum[i] % k 的即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,有多少个前缀和等于
sum[i] - k 。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边存下之前每⼀种前
缀和出现的次数。

例题七

解法(前缀和在哈希表中): 算法思路:
稍微转化⼀下题⽬,就会变成我们熟悉的题:
本题让我们找出⼀段连续的区间, 0 和 1 出现的次数相同。
如果将 0 记为 -1 1 记为 1 ,问题就变成了找出⼀段区间,这段区间的和等于 0
于是,就和 560. 和为 K 的⼦数组 这道题的思路⼀样 ,设 i 为数组中的任意位置,⽤ sum[i] 表⽰ [0, i] 区间内所有元素的和。 想知道最⼤的「以 i 为结尾的和为 0 的⼦数组」,就要找到从左往右第⼀个 x1 使得 [x1, i] 区间内的所有元素的和为 0 。那么 [0, x1 - 1] 区间内的和是不是就是 sum[i] 了。于是问题就变成:
找到在 [0, i - 1] 区间内,第⼀次出现 sum[i] 的位置即可。
我们不⽤真的初始化⼀个前缀和数组,因为我们只关⼼在 i 位置之前,第⼀个前缀和等于 sum[i]的位置。因此,我们仅需⽤⼀个哈希表,⼀边求当前位置的前缀和,⼀边记录第⼀次出现该前缀和的位置。

例题八

⼆维前缀和的简单应⽤题,关键就是我们在填写结果矩阵的时候,要找到原矩阵对应区域的「左上
⻆」以及「右下⻆」的坐标(推荐⼤家画图)
左上⻆坐标: x1 = i - k y1 = j - k ,但是由于会「超过矩阵」的范围,因此需要对 0 取⼀个 max 。因此修正后的坐标为: x1 = max(0, i - k), y1 = max(0, j - k) ;
右下⻆坐标: x1 = i + k y1 = j + k ,但是由于会「超过矩阵」的范围,因此需要对 m - 1 ,以及 n - 1 取⼀个 min 。因此修正后的坐标为: x2 = min(m - 1, i + k), y2 = min(n - 1, j + k) 。 然后将求出来的坐标代⼊到「⼆维前缀和矩阵」的计算公式上即可~(但是要注意下标的映射关系)
  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我要满血复活

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值