动态规划算法:⼦序列问题(数组中不连续的⼀段)

例题一

解法(动态规划):
算法思路:
1. 状态表⽰:
对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰:
dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦序列」中,最⻓递增⼦序列的⻓度。
2. 状态转移⽅程:
对于 dp[i] ,我们可以根据「⼦序列的构成⽅式」,进⾏分类讨论:
i. ⼦序列⻓度为 1 :只能⾃⼰玩了,此时 dp[i] = 1
ii. ⼦序列⻓度⼤于 1 : nums[i] 可以跟在前⾯任何⼀个数后⾯形成⼦序列。
设前⾯的某⼀个数的下标为 j ,其中 0 <= j <= i - 1 。只要 nums[j] < nums[i] , i 位置元素跟在 j 元素后⾯就可以形成递增序列,⻓度为 dp[j] + 1 。因此,我们仅需找到满⾜要求的最⼤的 dp[j] + 1 即可。 综上, dp[i] = max(dp[j] + 1, dp[i]) ,其中 0 <= j <= i - 1 && nums[j] < nums[i] 。
3. 初始化:
所有的元素「单独」都能构成⼀个递增⼦序列,因此可以将 dp 表内所有元素初始化为 1 。由于⽤到前⾯的状态,因此我们循环的时候从第⼆个位置开始即可。
4. 填表顺序:
显⽽易⻅,填表顺序「从左往右」。
5. 返回值:
由于不知道最⻓递增⼦序列以谁结尾,因此返回 dp 表⾥⾯的「最⼤值」。

例题二

解法(动态规划):
算法思路:
1. 状态表⽰:
对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰:dp[i] 表⽰「以 i 位置为结尾的最⻓摆动序列的⻓度」。但是,问题来了,如果状态表⽰这样定义的话,以 i 位置为结尾的最⻓摆动序列的⻓度我们没法从之前的状态推导出来。因为我们不知道前⼀个最⻓摆动序列的结尾处是递增的,还是递减的。因此,我们需要状态表⽰能表⽰多⼀点的信息:要能让我们知道这⼀个最⻓摆动序列的结尾是递增的还是递减的。解决的⽅式很简单:搞两个 dp 表就好了。
f[i] 表⽰:以 i 位置元素为结尾的所有的⼦序列中,最后⼀个位置呈现「上升趋势」的最⻓摆动序列的⻓度;
g[i] 表⽰:以 i 位置元素为结尾的所有的⼦序列中,最后⼀个位置呈现「下降趋势」的最⻓摆动序列的⻓度。
2. 状态转移⽅程:
由于⼦序列的构成⽐较特殊, i 位置为结尾的⼦序列,前⼀个位置可以是 [0, i - 1] 的任意位置,因此设 j [0, i - 1] 区间内的某⼀个位置。
对于f[i] ,我们可以根据「⼦序列的构成⽅式」,进⾏分类讨论:
i. ⼦序列⻓度为 1 :只能⾃⼰玩了,此时 f[i] = 1
ii. ⼦序列⻓度⼤于1 :因为结尾要呈现上升趋势,因此需要 nums[j] < nums[i] 。在满⾜这个条件下, j 结尾需要呈现下降状态,最⻓的摆动序列就是 g[j] + 1 。因此我们要找出所有满⾜条件下的最⼤的g[j] + 1 。综上, f[i] = max(g[j] + 1, f[i]) ,注意使⽤g[j] 时需要判断。
对于g[i] ,我们可以根据「⼦序列的构成⽅式」,进⾏分类讨论:
i. ⼦序列⻓度为 1 :只能⾃⼰玩了,此时 g[i] = 1
ii. ⼦序列⻓度⼤于 1 :因为结尾要呈现下降趋势,因此需要 nums[j] > nums[i] 。在满⾜这个条件下, j 结尾需要呈现上升状态,因此最⻓的摆动序列就是 f[j] + 1 。因此我们要找出所有满⾜条件下的最⼤的f[j] + 1 。 综上, g[i] = max(f[j] + 1, g[i]) ,注意使⽤f[j] 时需要判断。
3. 初始化:
所有的元素「单独」都能构成⼀个摆动序列,因此可以将 dp 表内所有元素初始化为 1
4. 填表顺序:
毫⽆疑问是「从左往右」。
5. 返回值:
应该返回「两个 dp 表⾥⾯的最⼤值」,我们可以在填表的时候,顺便更新⼀个「最⼤值」。

例题三

解法(动态规划):
算法思路:
1. 状态表⽰:
先尝试定义⼀个状态:以 i 为结尾的最⻓递增⼦序列的「个数」。那么问题就来了,我都不知道
i 为结尾的最⻓递增⼦序列的「⻓度」是多少,我怎么知道最⻓递增⼦序列的个数呢?因此,我们解决这个问题需要两个状态,⼀个是「⻓度」,⼀个是「个数」:
len[i] 表⽰:以 i 为结尾的最⻓递增⼦序列的⻓度;
count[i] 表⽰:以 i 为结尾的最⻓递增⼦序列的个数。
2. 状态转移⽅程:
求个数之前,我们得先知道⻓度,因此先看 len[i]
i. 在求 i 结尾的最⻓递增序列的⻓度时,我们已经知道 [0, i - 1] 区间上的 len[j]信息,⽤ j 表⽰ [0, i - 1] 区间上的下标;
ii. 我们需要的是递增序列,因此 [0, i - 1] 区间上的 nums[j] 只要能和 nums[i]构成上升序列,那么就可以更新 dp[i] 的值,此时最⻓⻓度为 dp[j] + 1
iii. 我们要的是 [0, i - 1] 区间上所有情况下的最⼤值。
综上所述,对于 len[i] ,我们可以得到状态转移⽅程为:
len[i] = max(len[j] + 1, len[i]) ,其中 0 <= j < i ,并且 nums[j] < nums[i] 。
在知道每⼀个位置结尾的最⻓递增⼦序列的⻓度时,我们来看看能否得到 count[i]
i. 我们此时已经知道 len[i] 的信息,还知道 [0, i - 1] 区间上的 count[j] 信息,⽤ j 表⽰ [0, i - 1] 区间上的下标;
ii. 我们可以再遍历⼀遍 [0, i - 1] 区间上的所有元素,只要能够构成上升序列,并且上升序列的⻓度等于 dp[i] ,那么我们就把 count[i] 加上 count[j] 的值。这样循环⼀遍之后, count[i] 存的就是我们想要的值。 综上所述,对于 count[i] ,我们可以得到状态转移⽅程为:
count[i] += count[j] ,其中 0 <= j < i ,并且 nums[j] < nums[i] && dp[j] + 1 == dp[i] 。
3. 初始化:
对于 len[i] ,所有元素⾃⼰就能构成⼀个上升序列,直接全部初始化为 1
对于 count[i] ,如果全部初始化为 1 ,在累加的时候可能会把「不是最⼤⻓度的情况」累加进去,因此,我们可以先初始化为 0 ,然后在累加的时候判断⼀下即可。具体操作情况看代码~
4. 填表顺序:
毫⽆疑问是「从左往右」。
5. 返回值:
lenmax  表⽰最终的最⻓递增⼦序列的⻓度。
根据题⽬要求,我们应该返回所有⻓度等于 l enmax  的⼦序列的个数。

例题四

解法(动态规划):
算法思路:
这道题⽬让我们在数对数组中挑选出来⼀些数对,组成⼀个呈现上升形态的最⻓的数对链。像不像
我们整数数组中挑选⼀些数,让这些数组成⼀个最⻓的上升序列?因此,我们可以把问题转化成我
们学过的⼀个模型: 300. 最⻓递增⼦序列 。因此我们解决问题的⽅向,应该在「最⻓递增⼦序
列」这个模型上。不过,与整形数组有所区别。在⽤动态规划结局问题之前,应该先把数组排个序。因为我们在计算 dp[i] 的时候,要知道所有左区间⽐ pairs[i] 的左区间⼩的链对。排完序之后,只⽤「往前遍历⼀遍」即可。
1. 状态表⽰:
dp[i] 表⽰以 i 位置的数对为结尾时,最⻓数对链的⻓度。
2. 状态转移⽅程:
对于 dp[i] ,遍历所有 [0, i - 1] 区间内数对⽤ j 表⽰下标,找出所有满⾜ pairs[j][1] < pairs[i][0] 的 j 。找出⾥⾯最⼤的 dp[j] ,然后加上 1 ,就是以 i 位置为结尾的最⻓数对链。
3. 初始化:
刚开始的时候,全部初始化为 1
4. 填表顺序:
根据「状态转移⽅程」,填表顺序应该是「从左往右」。
5. 返回值:
根据「状态表⽰」,返回整个 dp 表中的最⼤值。

例题五

解法(动态规划):
算法思路:
这道题和 300. 最⻓递增⼦序列 有⼀些相似,但仔细读题就会发现,本题的 arr.lenght ⾼达10^5 ,使⽤ O(N^2) lcs 模型⼀定会超时。
那么,它有什么信息是 300. 最⻓递增⼦序列 的呢?是定差。之前,我们只知道要递增,不知道前
⼀个数应当是多少;现在我们可以计算出前⼀个数是多少了,就可以⽤数值来定义 dp 数组的值,并形成状态转移。这样,就把已有信息有效地利⽤了起来。
1. 状态表⽰:
dp[i] 表⽰:以 i 位置的元素为结尾所有的⼦序列中,最⻓的等差⼦序列的⻓度。
2. 状态转移⽅程:
对于 dp[i] ,上⼀个定差⼦序列的取值定为 arr[i] - difference 。只要找到以上⼀个数字为结尾的定差⼦序列⻓度的 dp[arr[i] - difference] ,然后加上 1 ,就是以 i 为结尾的定差⼦序列的⻓度。因此,这⾥可以选择使⽤哈希表做优化。我们可以把「元素, dp[j] 」绑定,放进哈希表中。甚⾄不⽤创建 dp 数组,直接在哈希表中做动态规划。
3. 初始化:
刚开始的时候,需要把第⼀个元素放进哈希表中, hash[arr[0]] = 1
4. 填表顺序:
根据「状态转移⽅程」,填表顺序应该是「从左往右」。
5. 返回值:
根据「状态表⽰」,返回整个 dp 表中的最⼤值。

例题六

解法(动态规划):
算法思路:
1. 状态表⽰:
对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰:
dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦序列」中,最⻓的斐波那契⼦数列的⻓度。
但是这⾥有⼀个⾮常致命的问题,那就是我们⽆法确定 i 结尾的斐波那契序列的样⼦。这样就会导
致我们⽆法推导状态转移⽅程,因此我们定义的状态表⽰需要能够确定⼀个斐波那契序列。根据斐波那契数列的特性,我们仅需知道序列⾥⾯的最后两个元素,就可以确定这个序列的样⼦。因此,我们修改我们的状态表⽰为:
dp[i][j] 表⽰:以 i 位置以及 j 位置的元素为结尾的所有的⼦序列中,最⻓的斐波那契⼦序列的⻓度。规定⼀下 i < j 。
2. 状态转移⽅程:
设 nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是 a = c - b 。我们根据 a的情况讨论:
i. a 存在,下标为 k ,并且 a < b :此时我们需要以 k 位置以及 i 位置元素为结尾的最⻓斐波那契⼦序列的⻓度,然后再加上 j 位置的元素即可。于是 dp[i][j] = dp[k][i] + 1 ;
ii. a 存在,但是 b < a < c :此时只能两个元素⾃⼰玩了, dp[i][j] = 2
iii. a 不存在:此时依旧只能两个元素⾃⼰玩了, dp[i][j] = 2
综上,状态转移⽅程分情况讨论即可。
优化点:我们发现,在状态转移⽅程中,我们需要确定 a 元素的下标。因此我们可以在 dp 之前,将所有的「元素 + 下标」绑定在⼀起,放到哈希表中。
3. 初始化:
可以将表⾥⾯的值都初始化为 2
4. 填表顺序:
a. 先固定最后⼀个数;
b. 然后枚举倒数第⼆个数。
5. 返回值:
因为不知道最终结果以谁为结尾,因此返回 dp 表中的最⼤值 ret 。但是 ret 可能⼩于 3 ,⼩于 3 的话说明不存在。因此需要判断⼀下。

例题七

解法(动态规划):
算法思路:
1. 状态表⽰:
对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰:dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦序列」中,最⻓的等差序列的⻓度。但是这⾥有⼀个⾮常致命的问题,那就是我们⽆法确定 i 结尾的等差序列的样⼦。这样就会导致我们⽆法推导状态转移⽅程,因此我们定义的状态表⽰需要能够确定⼀个等差序列。根据等差序列的特性,我们仅需知道序列⾥⾯的最后两个元素,就可以确定这个序列的样⼦。因此,我们修改我们的状态表⽰为:
dp[i][j] 表⽰:以 i 位置以及 j 位置的元素为结尾的所有的⼦序列中,最⻓的等差序列的⻓度。规定⼀下 i < j
2. 状态转移⽅程:
设nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是 a =2 * b - c 。我们根据a的情况讨论:
a. a 存在,下标为 k ,并且 a < b :此时我们需要以 k 位置以及 i 位置元素为结尾的最⻓等差序列的⻓度,然后再加上 j 位置的元素即可。于是 dp[i][j] = dp[k][i] + 1 。这⾥因为会有许多个 k ,我们仅需离 i 最近的 k 即可。因此任何最⻓的都可以以 k为结尾;
b. a 存在,但是 b < a < c :此时只能两个元素⾃⼰玩了, dp[i][j] = 2
c. a 不存在:此时依旧只能两个元素⾃⼰玩了, dp[i][j] = 2
综上,状态转移⽅程分情况讨论即可。
优化点:我们发现,在状态转移⽅程中,我们需要确定 a 元素的下标。因此我们可以将所有的元素 + 下标绑定在⼀起,放到哈希表中,这⾥有两种策略:
a. 在 dp 之前,放⼊哈希表中。这是可以的,但是需要将下标形成⼀个数组放进哈希表中。这样时间复杂度较⾼,我帮⼤家试过了,超时。
b. ⼀边 dp ,⼀边保存。这种⽅式,我们仅需保存最近的元素的下标,不⽤保存下标数组。但是⽤这种⽅法的话,我们在遍历顺序那⾥,先固定倒数第⼆个数,再遍历倒数第⼀个数。这样就可以在 i 使⽤完时候,将 nums[i]扔到哈希表中。
3. 初始化:
根据实际情况,可以将所有位置初始化为 2 。
4. 填表顺序:
a. 先固定倒数第⼆个数;
b. 然后枚举倒数第⼀个数。
5. 返回值:
由于不知道最⻓的结尾在哪⾥,因此返回dp 表中的最⼤值。

例题八

解法(动态规划):
算法思路:
1. 状态表⽰:
对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表⽰:
i. 以某个位置为结尾,巴拉巴拉;
ii. 以某个位置为起点,巴拉巴拉。
这⾥我们选择⽐较常⽤的⽅式,以某个位置为结尾,结合题⽬要求,定义⼀个状态表⽰:
dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦序列」中,等差⼦序列的个数。
但是这⾥有⼀个⾮常致命的问题,那就是我们⽆法确定 i 结尾的等差序列的样⼦。这样就会导致我们⽆法推导状态转移⽅程,因此我们定义的状态表⽰需要能够确定⼀个等差序列。根据等差序列的特性,我们仅需知道序列⾥⾯的最后两个元素,就可以确定这个序列的样⼦。因此,我们修改我们的状态表⽰为:
dp[i][j] 表⽰:以 i 位置以及 j 位置的元素为结尾的所有的⼦序列中,等差⼦序列的个数。规定⼀下 i < j
2.
状态转移⽅程:
设nums[i] = b, nums[j] = c ,那么这个序列的前⼀个元素就是 a =2 * b - c 。我们根据a的情况讨论:
a. a 存在,下标为 k ,并且 a < b :此时我们知道以 k 元素以及 i 元素结尾的等差序列的个数 dp[k][i] ,在这些⼦序列的后⾯加上 j 位置的元素依旧是等差序列。但是这⾥会多出来⼀个以 k, i, j 位置的元素组成的新的等差序列,因此 dp[i][j] = dp[k][i] + 1 ;
b. 因为 a 可能有很多个,我们需要全部累加起来。
综上, dp[i][j] += dp[k][i] + 1
优化点:我们发现,在状态转移⽅程中,我们需要确定 a 元素的下标。因此我们可以在 dp 之前,将所有元素 + 下标数组绑定在⼀起,放到哈希表中。这⾥为何要保存下标数组,是因为我们要统计个数,所有的下标都需要统计。
3. 初始化:
刚开始是没有等差数列的,因此初始化 dp 表为 0
4. 填表顺序:
a. 先固定倒数第二个数;
b. 然后枚举倒数第一个数。
5. 返回值:
我们要统计所有的等差⼦序列,因此返回 dp 表中所有元素的和。
  • 5
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别致的影分身

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值