自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 处理缺失值笔记

V=mode(A);%众数,常用于离散变量缺失值的填补 (性别,年级,等级)sum=(TF,1) %计算每一列的和(每一个指标下有多少缺失值)%V =median(A,'omitnan') %中位数。sum=(TF,2) | %计算每一行的和。时间需类数据 %同一对象不同时间的数据。横截面数据 %同一时间不同对象的数据。如果样本量太少 可以考虑填补缺失值。利用非缺失值的平均值 中位数 众数。isming函数和sum函数。缺失值太多可以考虑删除。

2024-02-15 01:27:34 183 1

原创 美赛数据常用查找

3、美国普查局: http://2010.census.gov/2010census/language/chinese-simplified.php。1、香港中文大学的数学中英对照:http://www.cmi.hku.hk/Ref/Glossary/Mat/i.htm。6、美国国家农业统计署:http://www.usda.gov/wps/portal/usda/usdahome。12、联合国数据中心:http://www.un.org/zh/databases。

2024-01-02 09:36:34 466

原创 数学建模新手如何学好数学建模

对于数学建模,注重的是理论与应用,即应用型数学,对于未接触过这方面的新手,可以参考司守奎的《数学建模算法与应用》书籍,或是在其他网站上搜索关于数学建模的视频进行入门,正如好记性不如烂笔头,对于一个模型,一定要对一些知识点做笔记,其次,数学建模使用到的软件大多是python或是matlab,故一定要学好这两个软件,可以在网上搜索这两个软件的入门教程,在数学建模问题中,第一步则是应该对数据进行预处理,将数据中的缺失值,异常值等识别出来并且处理,其次对于数学建模中的大数据类问题,应该熟练掌握的模型有。

2023-12-31 03:24:52 538

原创 基于stata软件求解多元线性回归模型问题实战

可以看到,农药费和灌溉费对单产的影响最大,Beta值只关心绝对值,绝对值越大,说明影响越大,针对本题,可以理解为灌溉费对单产的影响最大,其中灌溉费每增加一元,单产则会增加1.110757。可以看到,拟合优度为0.7408,但调整后的拟合优度为0.6327,且各自变量的p值均大于0.05,但总体p值却小于0.05,故我们认为存在多重共线性的影响,故我们进行多重共线性检验。简单来说,定性数据就可以理解为男女,是否,成功与不成功等,定量数据则为具体的数值,如商品的数量为20,房价为10000/m2。

2023-12-31 02:53:38 2959

原创 利用matlab绘制好看的相关系数矩阵图

注意,在使用皮尔逊系数之前,一定要对其进行线性检验,但这篇文章只是介绍如何用matlab绘制好看的热力图,故我们不做说明,后续可能会介绍如何利用matlab进行线性检验。其中,colormap后面跟的则是图片的颜色,可以根据自己的喜好来更改,这里给出各颜色名称,仅供参考。至此已讲解完毕,效果如图所示。四、绘制相关系数热力矩阵图。三、计算皮尔逊相关系数。

2023-12-30 22:01:23 2306

原创 基于matlab中随机森林模型处理分类问题实战

这是关于意大利一个地区的葡萄酒数据,该数据是对该地区的三种不同培育品种的葡萄所酿造的酒的13种要素的化学分析结果,一共有178个观测值。至此,利用随机森林模型对于分类模型的求解已完毕,但还有很多细节没有说明,如F1分数,混淆矩阵,ROC曲线,网格调参,随机森林模型网格搜索最大决策分裂数目热力图绘制,后续应该会更新。将数据导入进matlab中,将数据分为训练集和测试集,训练集为已知的分类变量和各输入变量,测试集内应仅有输入变量,没有分类变量,再这之后,如果只是想预测出分类结果,输入这一行代码即可。

2023-12-30 21:32:32 1461

原创 基于matlab中机器学习工具箱中随机森林模型简单易上手对房价预测实战

2.2 将转换好的数据集导入matlab中,分为训练集与测试集,记训练集为data1,测试集为data2,其中需要将matlab默认的一些指标更改,在这道例题中是否是地铁房,是否是学区房,matlab默认是数值变量,我们需要手动修改为分类变量,如图所示。在数据集中,发现楼层高低,是否是地铁房,是否是学区房这三个输入变量均为定性变量,故考虑转为虚拟变量01,记楼层高为1,楼层低为0,是地铁房为1,是学区房为1,否则为0。至此,利用matlab的工具箱对房价预测的实战例题已求解完毕。3.1随机森林模型的介绍。

2023-12-29 02:18:01 2817 6

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除