编码规范
1. 命名规范
命名约定:使用一致的命名约定,如camelCase(小驼峰命名法)、PascalCase(大驼峰命名法)、snake_case(下划线命名法)等。命名应清晰表达变量的用途、函数的功能或类的属性。
命名长度:名字长度一般控制在3到30个字母之间,避免使用过长的命名,同时也不应使用太短或难以理解的缩写。
避免使用拼音:尽量使用英文单词进行命名,避免使用拼音,以提高代码的可读性和国际化水平。
2. 代码格式
缩进和空格:代码缩进应使用空格或制表符,并保持一致性。通常,每个缩进级别使用4个空格或1个制表符。在条件语句、循环语句等结构中,应正确使用缩进以表示代码块的结构。
行宽限制:每行代码的长度不应超过80到120个字符,以提高代码的可读性。过长的代码行应适当拆分。
3. 注释和文档
注释:在代码中添加必要的注释,以解释代码的意图、复杂逻辑或关键决策。注释应简洁明了,避免冗余和误导。
文档:对于函数、类、模块等较大的代码块,应编写详细的文档说明其功能、参数、返回值和异常处理等。
4. 编码风格
一致性:在整个项目中保持一致的编码风格,包括命名、缩进、空格、注释等方面。这有助于团队成员之间的协作和代码的理解。
简洁性:编写简洁明了的代码,避免不必要的复杂性和冗余。使用合适的数据结构和算法来优化代码的性能。
5. 版本控制
使用Git:掌握Git等版本控制工具的使用,遵循分支管理策略(如Git Flow)进行代码的版本控制和协作开发。
提交信息:提交代码时,应编写简洁明了的提交信息,描述所做的更改和目的。
6. 代码审查
代码审查:在代码合并到主分支之前进行代码审查,以发现潜在的错误、漏洞或不符合编码规范的地方。
工具使用:利用GitHub、GitLab、Bitbucket等工具进行代码审查,并在其中进行讨论和修改。
7. 测试和性能优化
单元测试:编写单元测试和集成测试,确保代码的正确性。使用合适的测试框架和工具进行自动化测试。
性能优化:关注代码的性能,避免不必要的计算和内存占用。使用性能分析工具识别和优化性能瓶颈。
读《数学之美》第2章 自然语言处理 有感
由于时间有限,浏览了一遍目录,我选择了阅读第2章。这本书叫《数学之美》,可是讲的内容却不是我从前所认为的“数学”。与其说是数学之美,不如更具体一点,说是算法之美。就像我阅读的第2章,通篇都在讲自然语言处理发展遇到的困难,却没有一个普遍意义上的数学难题。除此之外,这本书也不像我想象得那么枯燥。配图配文注释,常常吸引了我的注意力,我甚至会在大脑里想象出一段up主解读这本书的视频,用书中的话当做口播,搭配一个科学理性的解说音,竟然让我很快就看完了第2章。
第2章讲的是自然语言处理在发展过程中遇到的困难。先是讲“机器智能”,总结早期自然语言处理的发展,以及学术界科学界起初研究的方向错误。之后在错误的方向努力了很久,遇到了许多困难。然后是第二部分的“从规则到统计”,自然语言处理研究出现另一个方向,之后基于规则的自然语言处理和基于统计的自然语言处理争执了15年,以基于统计方法的胜利告终。最后小结,数学模型与通信是相通的,甚至是相同的。这似乎回扣了我最初的想法,为什么这本书明明叫“数学之美”,却一直在写各种算法模型。原来如此,科学家们用了几十年才认识到这个联系。科学家们几十年的努力才换来我这样几十分钟的效率。
以上是我对第2章的内容总结。其实最让我感兴趣的是“老科学家可以理解为‘老的科学家’或者‘老科学的家’两种”。前者指上了年纪的科学家,后者指的是过时了的科学。科学是不断发展更新的,仅仅靠坚持努力是不够的,我们也应该注重创新。让我想到那句名言“从来如此,便对吗”,又让我想到哲学发展观里的辩证否定,自己否定自己,自己发展自己。这才是科学该做的。未来,我或许还会继续在这片知识的海洋中遨游,寻找属于自己的那片星空。但我知道,无论走到哪里,我都将带着这份对科学的敬畏与热爱,继续前行。