论线性方程组线性相关性

论线性方程组线性相关性

线性相关性

表述是一组向量是线性相关的,哪几个向量线性相关。

表述是一组向量是线性无关的,哪几个向量线性无关。


线性相关

存在不都是0的一组k,使得向量组A:α1,α2,…,αn。

k1α1+k2α2+k3α3+…+knαn=0 成立

[0]  是与α同型的零向量

则称向量组A线性相关。(能找到一组符合的k就行)

否则,即只有全为0的一组k,才能使等式成立,则称向量组A线性无关。(只有唯一的一组都是0的k)


特殊的

向量组A只有一个向量ɑ

线性相关:⇒ɑ是零向量

线性无关:⇒ɑ不是零向量

向量组A只有两个向量ɑ1和ɑ2

线性相关:⇒ɑ1与ɑ2成比例

线性无关:⇒ɑ1与ɑ2不成比例

向量组A有三个向量(普遍的情况,即向量个数>=3)

线性相关:存在其中一个向量,可以由剩下的向量组合表示

线性无关:每个向量,都不可以由剩下的向量组合表示。

含有零向量的向量组一定线性相关


性质

(1) 向量组A:α1,α2,…,αn线性相关,则含有A的向量组也线性相关。

也就是:一个向量组里面存在子向量组线性相关,则该向量组线性相关。

反之:一个向量组线性无关,其任意子向量组也线性无关。

小相关,则大相关。大无关,则小无关。这两句是一定成立的,反之不一定。

(2) 向量维数小于向量数的向量组一定线性相关。

特别的:n+1个n维向量一定线性相关。

(3) 向量组A:α1,α2,…,αn线性无关,则含有向量组B:α1,α2,…,αn,b。线性相关,且b能被向量组A唯一表示。


相关性与秩的关系

由向量组A:α1,α2,…,αn。构成的矩阵A=(α1,α2,…,αn),他的秩R(A)

向量组A线性相关:R(A)<n (n是向量的个数,即向量组中向量个数)

向量组A线性无关:R(A)=n (n是向量的个数,即向量组中向量个数)


怎么理解线性相关呢?(本部分为个人兴趣)

首先,矩阵A的列数就是向量的个数(向量都是列向量)。

其次,由于矩阵A的秩小于列数,说明至少有一列最终被初等变换(那就当一列),变成了零向量。

最后,这一列C1能变成零向量的原因是,我们经过多次初等变换(某一列Ci的ki倍,加到这列C1),

C1+(k2C2+…+kiCi)=0,我们能得到C1,与后面这些列构成的向量组是线性相关的,推广一下(这里有一个性质后面再说),那向量组A就是线性相关的。

可能还有点不解,为什么不管向量的维数呢?

假设向量维数是m,有n个向量的向量组A,首先他构成的矩阵A的秩就有R(A)<=min(n,m)

这里还有一个性质:n+1个n维向量一定线性相关。n+k个也同样适用。

最简单例子说明:假设n个n维向量,他们对应矩阵是一个单位矩阵En,那个一个n维向量必然可以由这n个向量表示,即n+1个向量线性相关。

如果R(A)<=m:就是m<n,也就是n个维数小于n的向量。

由上面性质,一定线性相关。

如果R(A)<=n:就是m>=n,也就是他的维数,并不会影响这句话:

“向量组A线性相关:R(A)<n (n是向量的个数,即向量组中向量个数)”,因为没有维数事情了。

所以针对向量组他对应矩阵的秩来判断线性相关时候,我们不关心向量维数(因为没有影响)。

我们只关心向量个数与矩阵的秩的关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值