论线性方程组线性相关性
线性相关性
表述是一组向量是线性相关的,哪几个向量线性相关。
表述是一组向量是线性无关的,哪几个向量线性无关。
线性相关
存在不都是0的一组k,使得向量组A:α1,α2,…,αn。
k1α1+k2α2+k3α3+…+knαn=0 成立
[0] 是与α同型的零向量
则称向量组A线性相关。(能找到一组符合的k就行)
否则,即只有全为0的一组k,才能使等式成立,则称向量组A线性无关。(只有唯一的一组都是0的k)
特殊的
向量组A只有一个向量ɑ
线性相关:⇒ɑ是零向量
线性无关:⇒ɑ不是零向量
向量组A只有两个向量ɑ1和ɑ2
线性相关:⇒ɑ1与ɑ2成比例
线性无关:⇒ɑ1与ɑ2不成比例
向量组A有三个向量(普遍的情况,即向量个数>=3)
线性相关:存在其中一个向量,可以由剩下的向量组合表示
线性无关:每个向量,都不可以由剩下的向量组合表示。
含有零向量的向量组一定线性相关
性质
(1) 向量组A:α1,α2,…,αn线性相关,则含有A的向量组也线性相关。
也就是:一个向量组里面存在子向量组线性相关,则该向量组线性相关。
反之:一个向量组线性无关,其任意子向量组也线性无关。
小相关,则大相关。大无关,则小无关。这两句是一定成立的,反之不一定。
(2) 向量维数小于向量数的向量组一定线性相关。
特别的:n+1个n维向量一定线性相关。
(3) 向量组A:α1,α2,…,αn线性无关,则含有向量组B:α1,α2,…,αn,b。线性相关,且b能被向量组A唯一表示。
相关性与秩的关系
由向量组A:α1,α2,…,αn。构成的矩阵A=(α1,α2,…,αn),他的秩R(A)
向量组A线性相关:R(A)<n (n是向量的个数,即向量组中向量个数)
向量组A线性无关:R(A)=n (n是向量的个数,即向量组中向量个数)
怎么理解线性相关呢?(本部分为个人兴趣)
首先,矩阵A的列数就是向量的个数(向量都是列向量)。
其次,由于矩阵A的秩小于列数,说明至少有一列最终被初等变换(那就当一列),变成了零向量。
最后,这一列C1能变成零向量的原因是,我们经过多次初等变换(某一列Ci的ki倍,加到这列C1),
C1+(k2C2+…+kiCi)=0,我们能得到C1,与后面这些列构成的向量组是线性相关的,推广一下(这里有一个性质后面再说),那向量组A就是线性相关的。
可能还有点不解,为什么不管向量的维数呢?
假设向量维数是m,有n个向量的向量组A,首先他构成的矩阵A的秩就有R(A)<=min(n,m)
这里还有一个性质:n+1个n维向量一定线性相关。n+k个也同样适用。
最简单例子说明:假设n个n维向量,他们对应矩阵是一个单位矩阵En,那个一个n维向量必然可以由这n个向量表示,即n+1个向量线性相关。
如果R(A)<=m:就是m<n,也就是n个维数小于n的向量。
由上面性质,一定线性相关。
如果R(A)<=n:就是m>=n,也就是他的维数,并不会影响这句话:
“向量组A线性相关:R(A)<n (n是向量的个数,即向量组中向量个数)”,因为没有维数事情了。
所以针对向量组他对应矩阵的秩来判断线性相关时候,我们不关心向量维数(因为没有影响)。
我们只关心向量个数与矩阵的秩的关系。