之前我们已经学了数组和链表。它们是 Arraylist 和 LinkedList 的底层结构。
集合命名和数据结构的关系:
1. **二叉树
这是一个普通二叉树。
- 节点:每一个圆就是一个节点
- 根节点:最顶层的节点,该二叉树为 9
- 度:每一节点的子节点数量(二叉树要求任意节点的度<=2)
- 树高:树的总层数,该二叉树为 4
- 左子节点:左下方的节点
- 右子节点:右下方的节点
- 根节点的左子树:紫线
- 根节点的右子树:蓝线
注意别的节点也可以有子树
节点的内部结构:
由于普通二叉树排序无规律,查找数据时效率慢,
因此有了二叉查找树(又称二叉排序树或者二叉搜索树)
**2. 二叉查找树:
特点:
- 每一个节点上最多有两个子节点(因为还是二叉树)
- 任意节点左子树上的值都小于当前节点
- 任意节点右子树上的值都大于当前节点
3. **二叉树的遍历:
前序遍历:
从根节点开始,然后按照当前节点,左子节点,右子节点的顺序遍历
中序遍历:
从最左边的子节点开始,然后按照左子结点,当前结点,右子结点的顺序遍历
后序遍历:
左子节点–>右子结点 --> 当前节点
举例:
层序遍历:
一层一层的去遍历
------------------------------------
4. **平衡二叉树
查找二叉树的弊端:可能出现长短腿的情况,退化成链表了
这时就有了平衡二叉树:
平衡二叉树的规则:
前提是二叉查找树
- 任意节点 左右子树 高度差不超过1
下面这个二叉树就违背了规则
5.** 二叉树的演变
6. 平衡二叉树是如何保持平衡的?
平衡二叉树的旋转级制:
- 左旋
- 右旋
**触发时机:**当添加一个节点后,该树不再是一颗平衡二叉树
左旋:
步骤:
如:当添加 12 后不再是平衡二叉树 向上找到不平衡节点 10(右子树高 2,左子树高 0,高差超过 1) 将 10 作为支点,左旋完得:
特殊情况:
步骤:
此时 7 为不平衡节点,将其作为支点左旋
右旋:
步骤:
如:添加 1 后为不平衡, 先找到不平衡点 4, 作为支点右旋
特殊情况:
步骤:
添加完 1 后不平衡,7 为不平衡点,并作为支点,右旋,
**触发时机:**当添加一个节点后,该树不再是一颗平衡二叉树 又具体分为以下几种:
左左:一次右旋解决
左右:先局部左旋,再找支点右旋
右右:一次左旋解决
右左:先局部右旋 ,再找支点左旋
根节点的左子树
根节点的左子树得左子树
此时添加 1,不平衡了
此时 7 是不平衡点,作为支点,右旋
得:
我们在根节点左子树的右子树上添加 6
先不找平衡点,先将局部左旋
再整体右旋得:
7 为不平衡点,作为支点,直接左旋得
先局部右旋:得
再找平衡点 7,作为支点,左旋得:
7. 平衡二叉树小结:
- 小的放左,大的放右,重复不放
- 小的在左,大的在右
- 为了平衡,提升查找效率
- 当添加节点后 二叉树某一节点的左右子树高差大于 1
- 根节点的左子树的左子树有节点插入,导致不平衡。一次右旋
- 根节点的左子树的右子树有节点插入,导致不平衡。局部左旋,再整体右旋
- 根节点的右子树的右子树有节点插入,导致不平衡。一次左旋
- 根节点的右子树的左子树有节点插入,导致不平衡。局部右旋,再整体左旋
----------------------------------------
8. 红黑树:
为什么要有红黑树?
频繁的旋转操作使平衡二叉树的性能大打折扣
- 是一种自平衡的二叉查找树,又叫平衡二叉B树。
- 节点可以是红色或黑色
- 红黑树不是高度平衡的,它的平衡是通过**“红黑规则”**进行实现的
和平衡二叉树的区别:
红黑规则:
- 每个节点必须是黑色或红色
- 根节点一定是黑色
- ** Nil 视为 叶子节点**,黑色
引用:
Nil:NIL节点也称为外部节点或空节点,NIL节点不存储实际的数据,如果一个节点没有左子节点或右子节点,那么它的对应子节点就是一个NIL节点。通过将红黑树的所有叶子节点都替换为NIL节点,我们可以保证红黑树的每个节点都至少有一个子节点。这样,我们就可以通过判断节点的子节点是否为NIL节点来处理边界情况,避免了在处理节点时需要特殊处理叶子节点的情况。
- 不能出现两个红色节点相连的情况
- 对每一个节点,从该节点到其 所有后代 叶节点的简单路径上(不可倒回),均包含相同数目的黑色节点;
如 17->15>Nil 和 17->25->22->Nil 均为两个黑色节点
下面这个就违背了规则 5
红黑树节点结构:
添加节点默认是红色(因为效率高)
如,
若添加黑色 值为 18 的节点,就违背了规则 5
若:
添加 红色 18 节点,直接可构成红黑树
(红黑树)添加节点的规则:
红黑树增删改查的性能都很好