算法题(130):激光炸弹

审题:

本题需要我们找出激光炸弹所能炸毁的最大价值并打印

思路:
方法一:二维前缀和

炸弹缺陷分析:题目中说目标若位于炸弹的边上就不能炸毁目标,其实是要求我们的炸弹必须完全包围目标方可炸毁

图示的阴影区域是m为1的激光炸弹,如果我们如图摆放炸弹,那么将没有目标被炸毁,因为没有一个目标是完全被炸弹包围住的

总体思路:

1.计算二维前缀和f:f[i][j]表示以(0,0)坐标为矩形左上角到以(i,j)坐标位矩形右下角的矩形区域的价值之和

2.枚举所有炸弹摆放情况:由于炸弹只能与x轴y轴平行的摆放,所以我们可以根据右下角坐标和边长m来枚举确定所有摆放情况

3.计算每个摆放情况的炸弹炸毁价值总和并用max维护answer,确保遍历结束后answer就是最大炸毁价值

解题:
 

nclude<iostream>
using namespace std;
int n, m;
const int N = 5010;
int a[N][N];//记录初始状态
int f[N][N];//前缀和
int answer;
int main()
{
	cin >> n >> m;
	while (n--)
	{
		int x, y, v;
		cin >> x >> y >>v;
		x++, y++;//将索引基准升为1
		a[x][y] += v;//每一个位置价值可能重复叠加
	}
	//前缀和计算
	for (int i = 1; i <= 5001; i++)
	{
		for (int j = 1; j <= 5001; j++)
		{
			f[i][j] = f[i - 1][j] + f[i][j - 1] - f[i - 1][j - 1] + a[i][j];
		}
	}
	m = min(m, 5001);//将m大于整个区域的情况兼容
	//枚举右下角坐标所有情况
	for (int i = m; i <= 5001; i++)
	{
		for (int j = m; j <= 5001; j++)
		{
			int x1 = i - m + 1;
			int y1 = j - m + 1;
			int sum = f[i][j] - f[x1 - 1][j] - f[i][y1 - 1] + f[x1-1][y1-1];
			answer = max(answer, sum);
		}
	}
	cout << answer << endl;
	return 0;
}

1.本题中坐标的边界就是5000,所以我们将N定义为5010就足够用来定义数组a和f了

2.记录数据的时候注意要用+=符号来添加,因为题目中说明了同一个位置可能存在多个目标,所以一个坐标位置的价值可能会叠加

3.为了兼容m大于边界的情况,我们将这种情况的m置为边界即可

注意:x1 + m -1 = i ; y1 + m - 1 = j

因为本题需要炸弹将整个矩形包围,所以x1和i之间的差值是m-1 

P2280 [HNOI2003] 激光炸弹 - 洛谷

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值