最最全的短路算法

  1. dijkstra

适用范围:一源对多点,堆优化,多源对一点,建反图,适用于非负权图

  • 朴素算法

每次寻找离起点最近的点,以其为中介点最松弛操作,未经任何数据结构和算法的优化,时间复杂度为O(n^2)

#include<bits/stdc++.h>
#define maxn 20000
#define INF 2147483647
#define ll long long
using namespace std;
struct Edge{int to;
    int w;
    int next;
}edge[500005];
ll head[maxn],dis[maxn],vis[maxn]={0};
int n,m,s,tot=0;
void addedge(int u,int v,ll w){
    edge[++tot].w=w;
    edge[tot].to=v;
    edge[tot].next=head[u];
    head[u]=tot;
}
int main(){
    scanf("%d%d%d",&n,&m,&s);
    for(int i=0;i<=n;i++)
    head[i]=-1;
    for(int i=1;i<=m;i++)
    {
        int u,v,w;
        scanf("%d%d%lld",&u,&v,&w);
        addedge(u,v,w);
    }
    for(int i=1;i<=n;i++)
    dis[i]=INF;
    dis[s]=0;
    int cur=s,nex,minm=INF;
    for(int i=1;i<=n-1;i++)
    {
        vis[cur]=1;
        for(int j=head[cur];~j;j=edge[j].next)
        if(!vis[edge[j].to]&&dis[edge[j].to]>dis[cur]+edge[j].w)
        dis[edge[j].to]=dis[cur]+edge[j].w;
        for(int j=1;j<=n;j++)
        if(!vis[j]&&dis[j]<minm)
        {
            minm=dis[j];
            nex=j;
        }
        if(minm==INF)
        break;
        cur=nex;
        minm=INF;
    }
    for(int i=1;i<=n;i++)
    printf("%lld ",dis[i]);
}
  • 堆优化

利用小顶堆维护dis数组的大小顺序,虽然会遍历m条边,但每次存储和取出最小边仅需logm的复杂度,总时间复杂度O(mlogm)

#include<bits/stdc++.h>
#include<queue>
#define maxn 10000
#define INF 1e10
#define ll long long
using namespace std;
struct Edge{
    int to;
    ll w;
    int next;
}edge[maxn];
struct node{
    int id;
    ll dis;
    bool operator <(const node &a)const{return a.dis<dis;}
};
ll head[maxn],dis[maxn],vis[maxn]={0};
int n,m,s,tot=0;
void dij(void)
{
    priority_queue<node>q;//加了一个小顶堆用于维护dis数组的某些信息
    node cur,nex;
    cur.id=s;
    cur.dis=0;
    q.push(cur);
    for(int i=1;i<=n;i++)
        dis[i]=INF;
    dis[s]=0;
    while(!q.empty())
    {
        cur=q.top();//每次从堆中拿出1.未遍历过的2.dis最小的点,不需要一个一个地查
        q.pop();
        if(vis[cur.id])continue;//个人理解为清除剩下的因为距离过长而导致后遍历的边
        vis[cur.id]=1;//能进入以下循环的应该只有n个点
        for(int i=head[cur.id];~i;i=edge[i].next)
        if(dis[edge[i].to]>dis[cur.id]+edge[i].w)//遍历连接该点的下一个点,做松弛操作,同时push入
        {
            dis[edge[i].to]=dis[cur.id]+edge[i].w;
            nex.dis=dis[cur.id]+edge[i].w;
            nex.id=edge[i].to;
            q.push(nex);
        }
    }//O(mlogm)复杂度
}
void addedge(int u,int v,ll w)
{
    edge[++tot].w=w;
    edge[tot].to=v;
    edge[tot].next=head[u];
    head[u]=tot;
}
int main()
{
    scanf("%d%d%d",&n,&m,&s);
    for(int i=0;i<=n;i++)
    head[i]=-1;
    for(int i=1;i<=m;i++)
    {
        ll u,v,w;
        scanf("%lld %lld %lld",&u,&v,&w);
        addedge(u,v,w);
    }
    dij();
    for(int i=1;i<=n;i++)
    printf("%lld ",dis[i]);
    system("pause");
}
  1. Floyd

适用范围:可以解决负权问题,同时记录了多源到多源的最短路径,适合多对多,时间复杂度较高。

采用dp的朴素思想,以dp[k][i][j]表示有i到j经过前k个点的最短距离,根据状态转移方程

dp[k][i][j]=min{dp[k-1][i][k]+dp[k-1][k][j],dp[k-1][i][j]}(经过第k个点和不经过第k个点)的二维优化得来。故k的顺序不能调换,不然不遵循dp的最优子结构。

#include<bits/stdc++.h>//floyd例题(洛谷--邮递员送信)
#define maxn 10000
#define INF 0x3f3f3f3f
#define ll long long
using namespace std;
ll n,m,ans=0;
ll dis[maxn][maxn];
int main()
{
    scanf("%lld%lld",&n,&m);
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
    dis[i][j]=INF;
    for(int i=1;i<=m;i++)
    {
        ll u,v,w;
        scanf("%lld%lld%lld",&u,&v,&w);
        dis[u][v]=min(dis[u][v],w);//用普通邻接矩阵存边时要考虑两点间多边的存在情况,链式前向星和邻接表不需要考虑
    }
    for(int i=1;i<=n;i++)
    dis[i][i]=0;
//-----------------------------------------------核心代码
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                dis[i][j]=min(dis[i][k]+dis[k][j],dis[i][j]);
//---------------------------------------------------------
    for(int i=1;i<=n;i++)
    ans+=dis[1][i]+dis[i][1];
    printf("%lld",ans);
    system("pause");//floyd算法,操作简便快捷
}
  1. Bellman-ford

适用范围:能够进行负权图的最短路求解,并对负环图存在性做出判断;一源对多源,或建反图实现多源到一源

算法思路:

对每条边进行最多n-1次松弛操作,时间复杂度O(n^2)

#include<bits/stdc++.h>//bellman-ford(洛谷--邮递员送信)
#define ll long long
#define maxn 10000
#define INF 0x3f3f3f3f
using namespace std;
ll n,m,u[maxn],v[maxn],w[maxn],dis[maxn],ans=0;
int main()
{
    scanf("%lld%lld",&n,&m);
    for(int i=1;i<=m;i++)
    scanf("%lld%lld%lld",&u[i],&v[i],&w[i]);
    memset(dis,127,sizeof(dis));
    dis[1]=0;//勿忘初始化
    for(int k=1;k<=n-1;k++)
    for(int i=1;i<=m;i++)
    dis[v[i]]=min(dis[v[i]],dis[u[i]]+w[i]);
    for(int i=1;i<=n;i++)
    ans+=dis[i];

    memset(dis,127,sizeof(dis));
    dis[1]=0;
    for(int k=1;k<=n-1;k++)
    for(int i=1;i<=m;i++)
    dis[u[i]]=min(dis[u[i]],dis[v[i]]+w[i]);
    for(int i=1;i<=n;i++)
    ans+=dis[i];
    printf("%lld",ans);
    system("pause");
}
  • bellman判断负环存在性

思路:bellman可以判断图上所有的负环存在性,但是针对从某一源点出发可以到达的负环,则可以设置vis以及或运算传递可到达的信息,如以下代码。

#include<bits/stdc++.h>
#define maxn 100000
#define INF 0x3f3f3f3f
#define ll long long
using namespace std;
int T,n,m;
int u[maxn],v[maxn],w[maxn],tot=0,dis[maxn];
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        int vis[maxn]={0};
        tot=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=m;i++)
        {
            int s,t,l;
            scanf("%d%d%d",&s,&t,&l);
            if(l>=0)
            {
                u[++tot]=s;
                v[tot]=t;
                w[tot]=l;
                u[++tot]=t;
                v[tot]=s;
                w[tot]=l;
            }
            else
            {
                u[++tot]=s;
                v[tot]=t;
                w[tot]=l;
            }
        }
        int flag=0;
        memset(dis,127,sizeof(dis));
        dis[1]=0;
        vis[1]=1;
        for(int k=1;k<=n-1;k++)
        for(int i=1;i<=tot;i++)
        if(dis[v[i]]>dis[u[i]]+w[i])
        {
            vis[v[i]]|=vis[u[i]];
            dis[v[i]]=dis[u[i]]+w[i];
        }
        for(int i=1;i<=tot;i++)
        if(dis[v[i]]>dis[u[i]]+w[i]&&vis[v[i]])
        flag=1;
        if(flag)
        puts("YES");
        else
        puts("NO");
    }
    system("pause");
}

  1. SPFA

适用范围:bell-man在时间上的优化,引入了队列加快了速度,但同时最坏情况时间复杂度仍与bellman相同,可能会被卡时间。

优化思路:

只有连接到某个点的边参与松弛后,该点才能参与后续的松弛操作,比如可能连接着终点或缩短了起点到其他点的距离,因此每个能够被松弛的点都能入列,否则不能。同时使用vis数组记录哪些点已经入列,后续如果又松弛操作导致入列,那么已经入列的点可以不再入列,一同由已入列的点进行后续的更新。

#include<bits/stdc++.h>
#include<queue>
#define ll long long
#define maxn 10000
#define INF 0x3f3f3f3f
using namespace std;
int n,m;
ll ans=0;
struct Edge{
    int to;
    int next;
    ll w;
}edge1[maxn],edge2[maxn];
int head1[maxn],head2[maxn],dis[maxn],vis[maxn]={0};
int tot1=0,tot2=0;
void addedge(int u,int v,ll w)
{
    edge1[++tot1].to=v;
    edge1[tot1].w=w;
    edge1[tot1].next=head1[u];
    head1[u]=tot1;

    edge2[++tot2].to=u;
    edge2[tot2].w=w;
    edge2[tot2].next=head2[v];
    head2[v]=tot2;
}
void spfa(void)
{
    queue<int>q;
    int s;
    q.push(1);
    vis[1]=1;
    dis[1]=0;
    while(!q.empty())
    {
        s=q.front();
        q.pop();
        vis[s]=0;//代表该点已经出队列
        for(int i=head1[s];~i;i=edge1[i].next)
        if(dis[edge1[i].to]>dis[s]+edge1[i].w)
        {
            dis[edge1[i].to]=dis[s]+edge1[i].w;
            if(!vis[edge1[i].to]) vis[edge1[i].to]=1,q.push(edge1[i].to);
            //vis数组是为了提高效率设计的
            //如果想要更新的元素已经在队列中,只需要把dis对应的距离更新了就可以了,
            //等到队列中已有的该点开始更新,到时候更新就可以一起更新
            //同时只有能做松弛操作的边指向的终点才有可能进行后续的松弛操作,否则不入队
        }
    }
}
void spfa1(void)
{
    queue<int>q;
    int s;
    q.push(1);
    vis[1]=1;
    dis[1]=0;
    while(!q.empty())
    {
        s=q.front();
        q.pop();
        vis[s]=0;
        for(int i=head2[s];~i;i=edge2[i].next)
        if(dis[edge2[i].to]>dis[s]+edge2[i].w)
        {
            dis[edge2[i].to]=dis[s]+edge2[i].w;
            if(!vis[edge2[i].to]) vis[edge2[i].to]=1,q.push(edge2[i].to);
        }
    }
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<=n;i++)
    head1[i]=head2[i]=-1;
    for(int i=1;i<=m;i++)
    {
        int u,v;
        ll w;
        scanf("%d%d%lld",&u,&v,&w);
        addedge(u,v,w);
    }
    memset(vis,0,sizeof(vis));
    memset(dis,127,sizeof(dis));
    spfa();
    for(int i=1;i<=n;i++)
    ans+=dis[i];
    memset(vis,0,sizeof(vis));
    memset(dis,127,sizeof(dis));
    spfa1();
    for(int i=1;i<=n;i++)
    ans+=dis[i];
    printf("%lld",ans);
    system("pause");
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值