今天学习递归算法~~:
目录
(*^▽^*)
一、递归思想:
将一个复杂的问题P0,转化为类似而更简单的问题P1,再将P1转化为类似而更简单的问题
p2,依次类推,直到推出的问题Pn足够简单,可以立即求解为止。
1.1 递归函数
如果在定义一个函数时,又直接或间接地调用了这个函数自身,就称之为递归函数。
1.2 新手技巧
a.不需要把精力放在每一层递归的细节里,所要做的就是充分相信你写的递
归,然后把精力放在出口的设计就行。
b.从创建那个递归函数的子程序开始,你就要假设他能够解決你赋予他的使命,不论你这个子程
序有没有写完。
c.可以猜想本身函数的递归只有两次,然后直接去推导这所谓两次的过程,然后直接写出代码,最后把更多的情况考虑进去看一下可不可以实现即可。
以下是具体应用:
二、基础习题
2.1 n的阶乘
输入案例:
5
输出案例:
5!=120
代码如下:
#include<stdio.h>
int f(int n)
{
int r;
if(n==1)
return 1;
else{
r=n*f(n-1);
return r;
}
}
int main()
{
int n;
scanf("%d",&n);
int y;
y=f(n);
printf("%d!=%d",n,y);
return 0;
}
解题思路:
参考新手方法:
想象要求的是求2的阶乘,则要实现的是2*f(1),而f(1)=1;则可得出。
如果想要更透彻的理解,则可以代3进去,会发现实现的是3*f(2),而由刚才得到的f(2)=2;可得f(3)的值。
2.2 输出数字
输入案例:
1234
输出案例:
1 2 3 4
代码如下:
#include <stdio.h>
void f(int n)
{
if(n<9)
printf("%d ",n);
else{
f(n/10);
printf("%d ",n%10);
}
}
int main()
{
int n;
scanf("%d",&n);
f(n);
return 0;
}
参考解题思路:
可以先用34思考:
则可分两步:1、输出34/10 2、输出34%10
接下来扩大到234代入程序检验顺序是否合适即可
2.3 池塘里生长的荷花
这个需要讲一下题目了:
输入:无
输出:
0.25
代码如下:
#include <stdio.h>
int f(int n)
{
if(n==30)
return 1;
else{
return 2.0*f(n+1);
}
}
int main()
{
int m;int n=28;
m=f(n);
printf("%.2f",1.0/m);
return 0;
}
参考解题思路:
本题目主要是想解决一下逆推问题,由本题可知递归出口的设计至关重要从29天假设,则结果绝对是1/2,所以2*f(30)=2;
则又与上题的推导过程类似了(〃'▽'〃)
2.4 各种公式
题目:
题目说明:n是正整数,x是浮点数,输入n与x,计算f(x,n)的值
输入案例:
5 3.2
输出案例:
2.74
代码如下:
#include <stdio.h>
#include <math.h>
float f(int n,float x)
{
float m;
if(n==1)
return 1+x;
else{
m=sqrt(n+f(n-1,x));
}
return m;
}
int main()
{
int n;float x,m;
scanf("%d%f",&n,&x);
m=f(n,x);
printf("%.2f",m);
return 0;
}
参考解题思路:
观察式子:分很多层,但每一层结构相似,那同样以2为例,则sqrt(2+f(1)),f(1)=1+x;则再次倒推回去发现是一样的道理
三、进阶习题
3.1汉诺塔问题
题目描述:
给定三根柱子,记为 A,B,C ,其中 A 柱子上有 n 个盘子,从上到下编号为 0 到 n-1 ,且上面的盘子一定比下面的盘子小,输入盘子个数,求将A中的盘子全部移动到C中盘子的所有情况。
输入案例:
3
输出案例:
A->C
A->B
C->B
A->C
B->A
B->C
A->C
代码如下:
#include<stdio.h>
void f(int n,char A,char B,char C)
{
if(n==1)
printf("%c->%c\n",A,C);//把A上的最后一块移动到C去
else{
f(n-1,A,C,B);//把A上头的那一堆都移动到B去
printf("%c->%c\n",A,C);
f(n-1,B,A,C);//把B头上的那一堆都移动到C去
}
return;
}
int main()
{
int n;
scanf("%d",&n);
f(n,'A','B','C');
return 0;
}
参考解题思路:
该递归可能会比较抽象:
但也可以从2开始想,如图所示:
3.2 跳台阶问题
题目:
假设一次可以跳一个台阶,也可以跳两个台阶。求跳n级台阶一共有几种跳法?
样例输入:
3
样例输出:
8
代码如下:
#include <stdio.h>
long f(int n)
{
if(n==1)
return 1;
if(n==2)
return 2;
return f(n-1)+f(n-2);
}
int main()
{
int n;
scanf("%d",&n);
long m;
m=f(n);
printf("%ld",m);
return 0;
}
参考解题思路:
实际上这是一道斐波那契数列题,那我们的做法同样可以先用3作为引子试探一下(〃'▽'〃),你也来试试吧!
四、总结
1,只用考虑怎样递归,不用考虑递归如何运行。
2,对递归的理解在于懂得放弃。
3,谢谢您的阅读,希望对您有所帮助,愿您今天也过的开心,拜拜✿✿ヽ(°▽°)ノ✿✿✿ヽ(°▽°)ノ✿!!下次见~~