Datawhale4月组队学习llm第一章:大模型简介
为了解决大型语言模型在生成文本时面临的一系列挑战,提高模型的性能和输出质量研究人员提出了一种新的模型架构:检索增强生成(RAG, Retrieval-Augmented Generation)该架构巧妙地整合了从庞大知识库中检索到的相关信息,并以此为基础,指导大型语言模型生成更为精准的答案信息偏差/幻觉: LLM 有时会产生与客观事实不符的信息,导致用户接收到的信息不准确。RAG 通过检索数据源,辅助模型生成过程,确保输出内容的精确性和可信度,减少信息偏差。知识更新滞后性: LLM 基于静态。
原创
2024-04-16 16:41:48 ·
1316 阅读 ·
4 评论